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CHAPTER 1

INTRODUCTION

This is the final report on the study of navigation systems for the Dual-
Mode Lunar Roving Vehicle (DLRV). The study was initiated by the National
Aeronautics and Space Administration, and was performed at the University of

Tennessee over a period of seven months.

1-1 Project Objectives

NASA's Lunar Roving Vehicle (LRV) program is a logical step in man's explo-
ration of space and the earth's celestial neighbors. The historic Apollo adven-
tures have dramatically put man's footprints on the moon. Now NASA's Apollo
Application program will assure that the technological advancements which made
possible this epic voyage will be fully exploited. One important part of the
Apollo Application program is the LRV. This vehicle is an important tool that
will help to maximize one of the returns in our investment in space, namely, new

information about lunar environment.

The DLRV, an advanced type of LRV, will have dual mode capability so that
it can be operated by astronauts aboard the vehicle or by earth-based remote con-
trollers. The objectives that have been set for the DLRV demand that the vehicle
be equipped with an accurate and reliable navigation system. The selection of
this navigation system is the subject of the investigation described in this

report.

1-2. System Requirements

The requirements for the navigation system to be used on the DLRV are set
by the mission planned for the vehicle. At the beginning, the vehicle will leave
the Lunar Excursion Module (LEM) and be driven around by astronauts in the manned
mode for a short period within 10 kilometers of the LEM, After astronauts return
to the earth the vehicle will depart from the LEM for a long distance trip across

the lunar surface in the remote-controlled mode. During this journey, the DLRV



will make many stops to collect scientifically important lunar samples by auto-
matic means. At the end of this translunar trip, it will be met by astronauts

who will unload the samples from the vehicle for scientific analysis.

Clearly, it is necessary to know the position of the DLRV if the astronauts
must return to the LEM in the manned mode and if the astronauts are going to meet
the vehicle at the end of its translunar trip. The navigation system will also
support the scientific experiments performed during the lunar sorties. It will
be possible to use navigation data to record, for any collected sample, the exact
location where it was obtained. The reduction of the information generated by
the navigation system will also add a new and valuable technique for accurate
mapping of the lunar surface. As a matter of fact, scientists planning the experi-
ments that will be carried on the LRV desire a precise measure of the vehicle

position.
A list of considerations for the DLRV navigation system is shown below:

1. A maximum travel distance of 1,000 km during a
one year period
2. A maximum manned speed of 15 km per hour and a
maximum unmanned speed of 2 km per hour
3. A desired navigation accuracy of 10 meters in the
horizontal directions and 1 meter in altitude with
respect to a given lunar map or a given lunar land-
mark.
4, The knowledge of DLRV at all times (implying a
continuous navigation.)
. A maximum weight of 7 kg.
. Reliability consideration

5

6

7. Volume consideration

8. Human factor consideration
9

. Power consideration

To meet the continuous navigation requirement, a dead reckoning navigator
must be employed. However, on the long DLRV mission, the error accumulated with
time when a dead reckoning navigator is used would be prohibitively large. There-
fore some type of position fixing scheme will be needed to periodically update
the position provided by the dead reckoning navigator. As a result, the DLRV
navigation system will consist of both a dead reckoning and a position fix navi-~

gator.



1-3. The Report

Although navigation is an old art, there still is need for the development
of new concepts and better techniques.to.suit various, particular applicatioms.
This report contains many considerations, new concepts, and attractive techniques
which have not appeared elsewhere. These new developments are scattered in Chap-

ters 4 to 7 of the report.

A preliminary review of possible navigation.components for the DLRV is given
in Chapter 2. Components which are obviously unsuitable for DLRV application

will be eliminated from study.

The formulation of two sets of navigation equations using lunar coordinates
are contained in Chapter 3. Equations needed for the study of navigation errors

caused by hardware imperfection are provided for each set.

Chapter 4 considers the usefulness of a pure odometer navigation system

for measuring not only the distance traveled by the LRV but also the LRV heading.

Chapter 5 discusses the problems associated with the mechanization of dead
reckoning navigation systems using various kinds of sensors. Several new ways

of using the components are suggested.

Chapter 6 presents six position fix schemes, two of them make use of celes-
tial bodies with known ephemerides and the others require the use of a lunar
satellite. Sensitivity analyses and computation equations for all schemes are

provided.

Chapter 7 suggests several new methods of using landmarks for LRV navigation.
Only angle measurements are required in these methods. The attractiveness of the

methods is discussed in detail.

Comparisons of various types .of navigation systems are given in Chapter 8.
For the purpose of comparison, a base-line system is proposed as a comparison

standard.

A summary of this report and a list of recommended future activities are

included in Chapter 9.

The final attachments to the report include a list of references and eight
appendices. The appendices contain all the lengthy derivations of the equations

shown in the text.



1-4. Coordinate Systems

Three coordinate systems will be used in this report. They and their respec-

tive unit vectors are defined in Table 1-1 and shown in Fig. 1-1.




Coordinate System

Origin

Set of Unit Vectors

il Along vehicle's forward
axis
S1, vehicle centered and j1 Completing the right
vehicle oriented Vehicle hand triad
kl Along vehicle's right-
ward axis
i2 Eastward along constant
latitude line
S2, vehicle centered and "
lunar coordinate . iy Northward along lunar
Vehicle . 1s
. meridian
oriented
k2 Completing the right-
hand triad (radially
outward)
i,3 Passing through the
lunar equator
83, lunar centered and Lunar j3 Passing through the
inertially oriented Center lunar equator
k, - Passing through the

lunar north pole

Coordinate Systems

Table 1-1




S2 and S3

S1

T 3

)

Coordinate Systems and Their Unit Vectors

Fig. 1-1

— 33



CHAPTER 2

NAVIGATION SYSTEM COMPONENTS

2-1. Navigation Components

Hardware components such as gyros, radars, accelerometers, and computers
are the building blocks that make up navigation systems. The job of the sys-
tem designer is to use these building blocks to organize and design a system
of blocks that is the best solution to the problem at hand. A large collection
of building blocks is available for consideration by the designer of a naviga-
tion system. What follows is a listing of some of these components. The hard-

ware components are classified according to the function that they perform.

Table II-1 also lists several of these components and gives some pertinent

data about them. The information in this table is from reference number 4.

2-2. Velocity Determination

Doppler Radar

The doppler radar is a single beam device that would be mounted on the
LRV so that a radar beam would be transmitted forward along the vehicle longi-
tudinal axis. The return signal reflected from stationary lunar objects would
be received and compared with the transmitted signal. The doppler frequency
shift between the transmitted and received signals would be proportional to
the component of LRV velocity along the vehicle longitudinal axis. Other com-

ponents of the velocity would be approximated as zero.

The doppler radar appears unsuited to the LRV application for two reasons.
First, the error in velocity measurement for the doppler radar is independent
of the vehicle speed. For the slow speeds expected for the unmanned DLRV this
characteristic tends to cause measurement errors that are a large percent of the
vehicle speed. Second, the present on-the-shelf doppler radar is too heavy.
However, there are means to get around these difficulties. Therefore radar is

considered a candidate.
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Accelerometers

Accelerometers mounted on the LRV can be used to measure the components of
the vehicle acceleration along the LRV axes. This acceleration can be resolved

along some fixed axes and then twice integrated to determine the LRV position.

The accelerometer null bias .and linear error both contribute to the navi-
gation inaccuracy. The effect of the accelerometer bias can be reduced by
including a simple logic circuit that will stop the integration of the accelero-

meter signal when the wheel odometers indicate that the vehicle is parked.

Because of the accuracy .of state of the art devices and their light weight

(1 kg.) inertial accelerometers are worthy of consideration for LRV navigation.

Odometers

Odometers measuring the angular rate of the LRV wheels are obvious candi-
dates for determining the vehicle velocity. They are especially attractive
because the odometer signals are .available from the electric motors that are
used to drive the LRV. Consequently no weight is charged to the navigation
system for the inclusion of odometers. An important source of error is wheel

slipping.

2-3. Vertical Determination

Inclinometer

The most obvious method for determining the vertical is with a pendulous
inclinometer. This vertical sensing instrument is either an electrolytic or
.electromagnetic, liquid damped pendulum device. It is lightweight - - only

about 0.2 kg.

One potentially degrading feature .of a pendulous inclinometer is that it
will swing when the vehicle accelerates. This disadvantage can be avoided by

using a heavier vertical gyro.

Vertical Gyro

A vertical gyro is a .second technique for determining the local vertical.

This instrument consists of a gyro with its spin axis maintained parallel to



10

the local gravity vertical by a gravity sensitive device. The advantage of a
vertical gyro is that the vertical gyro is not disturbed by vehicle acceleration.
A weight penalty must be paid to achieve this advantage. The vertical gyro weighs

about 2 kg, ten times as much as a simple inclinometer.

The vertical gyro's insensitivity to vehicle acceleration is achieved by
disconnecting the gyro from the vertical reference signal whenever it is recog-
nized that the vehicle is accelerating. On the LRV the wheel odometer signals
could be used to sense acceleration and cause the gyro to be disconnected from
the pendulous vertical reference. Or the vertical reference could be applied to
the gyro only during those periods when the LRV is stopped. During the time
when it is disconnected from the vertical gravity reference the gyroscope main-

tains the vertical direction because of its gyroscopic characteristics.

Both the pendulous inclinometer and the vertical gyro are gravity sensitive
devices. Neither of them will compensate for local gravity anomalies in order
to provide the geometric vertical. Although this will probably cause serious
difficulties for those DLRV position fixing schemes that require the local ver-
tical, this gravity anomaly problem is not expected to have a serious impact on

the dead reckoning schemes.

2-4, Azimuth Determination

Directional Gyro

A directional gyro can be used for azimuth determination. This is a two
degree of freedom instrument with the spin axis maintained in the horizontal
plane. Precisely determined torques must be applied to the gyro in order to
keep the spin axis in the horizontal plane as the horizontal plane rotates in
inertial space because of the lunar rotation and vehicle motion across the lunar
surface. This method of azimuth determination is attractive because it is self-
contained and because many years of evolutionary refinement have been devoted to

this navigational technique.
Sun Sensor
A celestial reference such as the sun provides a second technique for

azimuth determination. The measured line of sight from the vehicle to the

sun can be projected into the measured horizontal plane. The lunar ephemeris




will locate {2 in the horizontal plane relative to this projected celestial
line of sight if the navigator knows the time and lunar region where the LRV

is located.

It is encouraging to notice that the moon rotational rate is much less
than the earth's. During a three hour LRV sortie the moon will rotate only
about 1.5°. Consequently it might be possible to use the same ephemeris data

for the duration of a sortie rather than continuously updating the ephemeris.

One mission restriction imposed by the use of the sun line of sight for
azimuth determination is that the LRV must not go behind any objects that
would obstruct the vehicle to sun line of sight. Obviously such a device

could not function during the lunar night.

One instrument for measuring the line of sight to the sun is a sun aspect
sensor. In this device the pattern of a reticle shadow is observed by an array
of photoelectric cells and electronically translated into a measurement of the
sun line of sight direction., . This device is attractive because it is fixed on
the LRV and does not require moving gimbals as would a conventional sun tracker.
It is expected that a sun aspect sensor would weigh less than 2.5 kg and could

provide about one arc minute angular resolution.

An alternate technique for determining the line of sight from the vehicle
to the sun is to use a gimbaled sun tracker that would utilize a photoelectric
device as a sensor and a closed tracking loop to keep the axis of the device
pointed at the sun. This technique is unattractive because the required gim-

bals would probably be heavier than the digital sun aspect sensor.

2-5. Position Fixing - Line of Sight Devices

Celestial Trackers

In order to use star sightings to generate a position fix for the LRV it
is necessary to measure the direction .to known stars. This measurement is per-
formed using an optical star tracker. It is also possible that this device

could be used to measure the direction to an artificial lunar satellite.



Doppler Radar

One method of determining a position fix involves measuring the range for
a navigation satellite as it passes overhead. A doppler radar is used for

this measurement.
Radar

Conventional radars that measure the time delay for the reflection of a
transmitted signal could be used to measure the distance and direction from
the LRV to an artificial lunar satellite. These measurements could be used

to establish a position fix.

Laser

A laser tracker offers an alternate method of measuring the direction of
an artificial satellite. The primary advantage of a laser is its very narrow

beam width.

Transit

1 Edi ] - i e aan e ] ~ Tt
snown on available lunar maps could be used to help esta

Lunar landmarks can be used for navigation. Clearly, landmarks that are
b

for the LRV. A transit can be .used to make angular measurements. The required
accuracy and the corresponding size and weight of the transit will depend upon
the role that is assigned to landmark navigation techniques. If landmark navi-
gation is used as a primary system for establishing precise position fixes, then
a very accurate transit will be required. If, on the other hand, landmark navi-
gation is reserved as a simple, reliable, back-up navigation system, then the
accuracy requirements can be relaxed. .Some of the schemes discussed in Chapter
8 could provide valuable guidance information to an astronaut even if he were
forced to walk back to the LEM from a disabled LRV. The transit suited to this

purpose could be so simple and lightweight that it would be carried in a pocket

of the astronaut's suit.



2-6. Orientation Determination

The level of detail at which a system designer is working determines what
he considers to be components of his system. Here,gyroscopes and odometers have
been listed as components that are used in navigation systems. However, the
designer of a gyroscope might very well list the rotor and the gimbals as com-
ponents of his design. Similarly, a system designer studying the problem of
optimally integrating the information obtained from dead reckoning and position
fix navigation techniques might very well consider a complete inertial platform
as one component in the overall navigation scheme. Two different types of
inertial platforms are available: gimbaled platforms and strapdown or computa-
tional platforms. Both types of platform have the same purpose. They measure

the vehicle orientation in space.

Gimbaled Platform

The classic inertial platform that has been used for many years is a gim-
baled inertial platform. In this mechanism the signals from gyros are used to
stabilize in space the orientation of a mechanical gimbal. The gyroscopes are
mounted on the gimbals of a .gimbal system that has two or more degrees of free-
dom. One of the gimbals is fixed .to .the vehicle. Signals from the gyroscopes
drive torque motors that apply to the gimbals whatever torques are required to
stabilize 1n space the gimbal that is the actual incrtial platform. The gimbal
angles provide a measure of .the .vehicle orientation relative to the stabilized
gimbal and, consequently, provide a measure of the vehicle orientation relative

to space.

The mechanical gimbals required for this type of platform are heavy. There-

fore the gimbaled platform is unsuited to the LRV application.

Strapdown or Computational Platform

An alternate way to determine the vehicle orientation is with a strapdown or
computational platform. The instruments used in a strapdown platform are rate
gyros with their sensitive axes mounted along three orthogonal vehicle axes. By
resolving the measured angular rate .of the vehicle into an inertial coordinate
system and then integrating the angular rate, a continuous measure of the

vehicle orientation is generated. The resolution and integration of the angular



rate is performed by a special purpose .digital computer. This type of platform
is simpler from the instrument standpoint and thus can be lighter and smaller

than a gimbaled inertial platform.

14



CHAPTER 3

DEAD RECKONING NAVIGATION EQUATIONS

3-1. Dead Reckoning

Dead reckoning is the technique of integrating a vehicle's velocity vector
with respect to time in order to maintain a continuous measure of the vehicle
position. Fig. 3-1 is a block diagram description of the dead reckoning navi-
gation concept. The dead reckoning schemes considered here measure, resolve,

and integrate the velocity vector in three steps.

1. The LRV velocity vector is measured and the LRV
orientation relative to lunar navigation coordinates
is also measured.

2. The information measured in step 1 is used to
resolve the LRV velocity along lunar fixed navi-
gation coordinates.

3. The LRV velocity components are integrated with

respect to time to determine the LRV position.

In this chapter the sets of navigation equations relating the velocity

vector of the LRV to its position on the lunar surface are presented. A position

on the lunar surface is defined by a triad including the longitude, the lati-
tude, and the distance from the lunar center. Two sets of navigation equations
are discussed. The first one assumes a spherical lunar surface. The second
one is an approximation of the first. The simplified equations are accurate

enough for LRV navigation if its excursion range is small.

3-2. Navigation Equation Set No. 1

This section presents a set of navigation equations where no approximation
is made. Navigation is considered in east, north, and vertical directions. No

assumptions are imposed on the lunar terrain nor on the LRV excursion range.

15
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Navigation Equations

The geometry of special lunar .coordinates is depicted in Fig. 3-2. 1In this
figure there are latitude L, longitude X, horizontal distance H, eastward dis-
tance E, northward distance N, radial distance R, and AX for the increment of any
variable X. V represents the velocity.of a reference point on the LRV, ¥ is the

heading angle of V and 6 is the elevation angle of V.

Let S be the linear distance, then we have the following incremental quanti-
ties.
AS = idincremental distance
AH = incremental horizontal distance
= AS cos 8 =V cos 0 At
AR = incremental radial distance

= AS sin 6 =V sin 6 At

AL = dincremental latitude change
_ MM cos ¥ _ Vcos 6 cos ¥ At
R R
AX = incremental longitude change
- AHsin¥ _ V cos 6 sin ¥ At
R cos L R cos L

Taking limits gives the following rate equationms.

VH = H=1V cos 6 , horizontal speed (3-1)

‘ VR = R=V sin 6 . vertical speed (3-2)
. Vy cos ¥

QL = L = — latitude rate (3-3)
. VH sin ¥

Q = xr-= R oosT » longitude rate (3-4)

Integrating the last three equations yields

Latitude L L + J Q. dt
o L

L +
o

J V cos 0 cos ¥ dt (3-5)

R



JlVertical

Lunar North

N

Lunar Equator

Geometry of Lunar Coordinates

Fig. 3-2
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Longitude A = xo + f QA dt

V cos 0 sin ¥
- Ao + J R cos L (3-6)
Altitude R = R + f VvV, dt
0 R
= Ro + f V sin 6 dt (3-7)

The above three equations give the position of the LRV in terms of lunar coordi-
nates. The computations involved in these equations are shown in block diagram,
Fig. 3-3.

Error Analysis

Because of the imperfection of sensors the measured quantities always differ

from actual quantities. The differences lead to errors in navigation.

Let €x denote the errors in X', the measured value of X. Then we have

' = 6+ e, = measured pitch angle

=3

!
g

F

vVl = Vv + ey = measured speed.
Then
1 — ] : \i = *
VH = V' sin 6 (Vv + ev) sin (6 + ee)
' v _
VR = V' cos 8§ (Vv + sV) cos (6 + ee)
\ ] .
o _ Vv g cos ¥ vV + sv) sin (6 + ee) cos (¥ + EW)
= “' -
L R R + ER
V'H sin V¥' (Vv + ev) sin (6 + ee) sin (¥ + EW)
' == e e ———— =
2 A~ R" cos L' (R + ER) cos (L + eL)

Integrating the last three equations gives
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' =
L L + EL
(V + sV) sin (6 + ee) cos (¥ + EW)
= L0 + €L + TS dt (3-8)
o R
Y= A+ €y
(Vv + eV) sin (0 + se) sin (¥ + SW)
= Ao + €xo + (R + eR) cos (L + eL) de (3-9)
\J -
R = R + eR
= RO + ERo + J (v + ev) cos (B + se) dt (3-10)

Subtracting (3-5), (3-6), (3-7) from (3-8), (3-9), (3-10), respectively, we obtain

the following error equations for LRV navigation.

{ (V+ey) sin (6 + ¢y) cos (¥ + )
EL +
[o]

€. = dt
L R + ER

_ f V cos 6 cos V¥ dt (3-11)

R
(V+c¢e) sin (6 + ee) sin (Y + ew)
€, =€, + v dt
A Ao (R + eR) cos (L + EL)
V cos 6 sin ¥

- J R cos L dt (3-12)

€ = eRo + J (V + ev) cos (8 + ee) dt - J V cos 6 dt (3-13)

The above equations show that navigation errors are a nonlinear function of
measurement errors. To study the effect of measurement errors on navigation,

these equations can be simulated by digital computers.
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3-3. Navigation Equation Set No. 2

When the excursion range of the LRV is small, a set of simplified navigation

equations can be used. Two approximations are made, namely

i) R = Ro, a constant, in Equations (3-5) and (3-6)

ii) cos L = cos Lo’ a constant, in Equation (3-6)

Consider the MLRV mission where the excursion range will be less than 5 km.

The maximum change in latitude is

5 . _ °
AL max - 1738 = 0.00288 radian = 0.16
where 1738 is the lunar radius in km. Within + 20° of lunar equator the maximum

change in cos L for 5 km excursion is

cos 20° - cos 19.84° 0.00099.

'—0.93969 + 0.94068

This contributes to a maximum final position error of about 0.099%.

Navigation Equations

Applying the two approximations mentioned above, Equations (3-5), (3-6), and
(3-7) become

Latitude L = Lo +-—%— J Vcos 6 cos ¥ dt (3-14)
o
. _ 1 .
Longitude A = Ao + X oos L J V cos 6 sin ¥ dt (3-15)
o) o
Altitude R = R0 + f V sin 6 dt (3-16)

The computation block diagram for this simplified set of navigation equations
is shown in Figure 3-4. Comparing this set to the previous set we see that the

divisions by variables are eliminated.
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Error Analysis

Two kinds of errors are involved in using this set of navigation equations.
The first kind is the system error which is due to the use of two approximations.

The second kind is due to measurement errors.

Replacing variables in (3-14), (3-15), and (3-16) by their measured value
and then comparing the resulting equations to (3-5), (3-6), and (3-7), respec-
tively, we obtain the following set of equations for error simulation.

€. = € + 1 (V+ e )cos (68 +€.) cos (Y + ¢,.) dt
\Y% G Y

L "Ly R

dt (3-17)

_ V cos O cos ¥
R

1

€>\ = e)\o +WJ (Vv + EV) cos (6 + 86) sin (¥ + E‘,\y) dt

Vcos 6 sin ¥
- J R cos L dt (3-18)
€ = ERo + J (Vv + EV) sin (6 + Ee) dt - J V sin 0 dt (3-19)
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CHAPTER 4

ODOMETER NAVIGATION SYSTEM

It is known that there will be an odometer mounted on each wheel of the LRV
as part of the wheel package. The odometer used will have angular rate output as
well as angular displacement output. Furthermore, the weight of odometers will
not be charged to the allowed weight of the navigation system. Therefore, it is
very desirable that the navigation system take advantage of the available odo-

meter output.

In the following development it is assumed that the LRV frame consists of two
T-frames, as shown in Fig. 4-1, hinged at the feet of the two T's. Four wheels
are attached to the arms of T's. Only two front wheel odometers are used in the

following development.

4-1. Pure Odometer Navigation System

In principle, when the ground is level, two odometers alone can provide exact
coordinates of the LRV if the initial position and heading of the vehicle are known,
and can provide the relative position with respect to the initial position if the
initial coordinates are not known. A pure odometer navigation system for the level

surface is developed here.

Let X(t) and Y(t) be the distance measured eastward and northward, respec-

tively. The LRV position and heading at any time is given by (see Fig. 4-2)

t
X(t) = X0 + jo V(tl) sin vy (tl) dtl
. (4-1)
Y(t) =Y + J V(t;) cos ¥ (t)) dt,
and °
t
¥(t) = o+ J w(tl) de, (4-2)
)
where

X,Y, Wo = initial value of X, Y, and ¥, respectively.

V = LRV linear velocity



A LRV Frame

Fig. 4-1
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w = angular velocity of the

instantaneous center of

The velocities of the left and right front

wheel axis about its

curvature.

wheels are

curvature

VL =w (r - a)
VR =w (r + a)
where
r = instantaneous radius of
a = half axial length
Hence,
o = Vg~ Y
2a )
Also,
v o VR + VL
2

Substituting (4-2), (4-3), (4-4),

't
V_(t.) + V. (t,)
X(t) = X+ R 1 L'1
s} 2
‘0
t
V_o(t,) + V. (t,)
Y(t) =Y + R 1 L' 1
0 o 2

and (4-5) into (4-1) yields

sin (Y +
o

cos (Y +
o

’

"

VR (t2) - VL(tz)

[0}

ft1

2a

VR(tZ) - VL (tz)

J

2a

(4-3)

(4-4)

(4-5)

dtz) dt1

dtz) dtl

28

(4-6)

Equations (4-6) and (4-2) give the LRV's position and heading at any time t.

An instrumentation block diagram of the navigation system is shown in Fig. 4-3,

which is fairly simple.

4-2. Remarks and Simulation

The merit of this scheme is its simplicity. However, it has the disadvan-
tage that it is sensitive to wheel-slip and wheel-lock.

of a wheel will generate both permanent heading and distance error.

of a permanent heading error is a very serious disadvantage.

Any slipping or locking

The possibility
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Heading angle ¥ = -45°
LRV velocity 10 meters per second

30

Tilt angle of Actual horizontal Approximate horizontal | % Error
flat surface distance distance by pure
odometer navigation
a=8=0 5.0 5.0 0
a=8=05° 49.622 5.0 0.755
a =8 =10° 48.515 5.0 2.97

Simulation of Odometer Navigation Systems (Fig. 4-4)

Zero Heading Rate

Table 4-1




Y

40

30

(m) 20

10

vV = _m
sec
w =0
= 45°
o
10 20 30 40

X (meters)

[¢] : a=0°g=0°
[4] =5, 8=5°

O] : «

Q
\

10°, 8 = 10°

Simulation of Pure Odometer Navigator (Table 4-1)

Fig. 4-4
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Heading rate w = ¥ = -sin 2t
Flat Surface Tilt angle a = B = 5°

LRV velocity V = 10 meters per second

Initial heading angle v, = 0°

Time LRV Horizontal Position
Actual Pure Odometer Approximation
X (m) Y (m) X (m) Y-error Y(m) Y-error
(%) (%)
0 0 0 0 0
/10 1.0127x107"  3.1387 8.6672x10 2.9702
27/10 7.5721x10""  6.2025 7.5435%10 6.1732
37/10 2.2573 8.9484 7.2488 8.8913
4m/10 4.,4810 1.1156x10 4.4641 1.1079x%10
5m/10 7.0674 1.2937x10 7.0407 0.378 1.2834x10 0.796
6m/10 9.6537 1.4717x10 9.6173 1.4588x10
71/10 1.1877x10 1.6925x10 1.1832%10 1.6770%10
81/10 1.3377x10 1.9670x10 1.3327x10 1.9494x%10
971/10 1.4033x10 2.2734%10 1.3780x10 2.2541x10
U 1.4134%10 2.5872x10 1.4081x10 0.375 2.5667x10 0.792
117/10 1.4235x10 2.9011x10 1.4181x10 2.8793x10
127/10 1.4891x10 3.2075%10 1.4835%10 3.1840x10
13m/10 1.6391x10 3.4820%10 1.6329x10 3.4564%10
14w /10 1.8614x10 3.7028x10 1.8544x10 3.6746%10
157/10 2.1200x%10 3.8808x10 2.1120x10 0.377 3.8500x%10 0.794
16m/10 2,3787x10 4,0589%10 2.3697x10 4.0255x10
17w/10 2.6010x10 4,27797x10| 2.5912x10 4.,2437x10
18w/10 2.7510x10 4.5542%10 2,7406x10 4.5161x10
197/10 2.8166x10 4,8606x10 2.8059x10 4.8208x10
27 2.8267x10 5.1744%10 2.8160x10 0.379 5.1334x10 0.792
Simulation of Odometer Navigation Systems (Fig. 4-5)

Non-Zero Heading Rate

Table 4-2
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(m)

50
40
Approximation
.
7 Actual
7
30
20 <
a = 5°
= 5°
v = 0°
10
- m
sec
= -sin 2t
X
0 10 20 30

X (meters)

Simulation of Pure Odometer Navigator (Table 4-2)

Fig. 4-5
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Heading rate w
Flat Surface Tilt angle o
LRV velocity 10 meters per second
Initial heading angle Wo

= V¥ =gin 2t

B =5°

-45°

Time LRV Horizontal Position
Actual Pure Odometer Approximation

X (m) Y (m) X(m) Y-error Y (m) Y-error
0 0 0 0 0
m/10 2.2910 2.1478 2.2823 2,1222
2m/10 4.9213 3.8504 4.,9027 3.7985
3n/10 7.9236 4.7313 7.8937 4.6533
4m/10 1.1057x10 4.7197 1.1015x10 4.6181
5m/10 1.4145x10 4.1503 1.4092x10 0.3757  4.0274 2.961%
6m/10 1.7233x10 3.5808 1.7168x10 3.4368
77/10 2.0366x10 3.5693 2.0290x10 3.4016
8n/10 2.3369x%10 4.4502 2.3281x10 4.2564
91/10 2.5999x10 6.1509 2.5901x10 5.9327
m 2.8290x10 8.3006 2.8183x10 0.378 8.0549 2,960
11rm/10 3.0581x10 1.0448x10 3.0465x%10 1.0177x10
127/10 3.3211x10 1.2151%10 3.3086x10 1.1853x10
137/10 3.6214x10 1.3032x10 3.6077x10 1.2708x10
14w /10 3.9347x10 1.3020x10 3.9198x10 1.2673x10
157/10 4.2435x10 1.2451x10 4.,2275x%10 0.377 1.2082x10 2.964
l6m/10 4.5523x10 1.1881x10 4.5351x10 1.1492x10
177/10 4.8656x10 1.1870x10 4,8473x10 1.2311x10
187/10 5.1659x10 1.2751x10 5.1464%10 1.2311x10
197/10 5.4289x10 1.4454%10 5.4084%x10 1.3988x10
27 5.6580x10 1.6601x10 5.6366x10 0.378 1.6110x10 2.958

Simulation of Odometer Navigation Systems (Fig. 4-6).

Non-Zero Heading Rate

Table 4-3
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Heading rate w = ¥ = -gin 2t

Flat Surface Tilt angle a = B = 10°
LRV velocity 10 meters per second
Initial heading angle ¥ = 0°

Time LRV Horizontal Position
Actual Pure Odometer Approximation
X(m) Y (m) - X(m) Y-error Y (m) Y-error
(%) (%)

0 0 0 0 0
n/10 1.0127x10""  3.1387 9.9773x1072 3.0880
21/10 7.5721x10""  6.2025 7.4604x10"! 6.0858
3r/10 2.2573 8.9484 2.2240 8.7454
4m/10 4.4810 1.1145x10 4.4149 1.0835x10
57/10 7.0674 1.2937x10 6.9632 1.474 1.2530x10 3.146
6m/10 9.6537 1.4717x10 9.5114 1.4207x10
7n/10 1.1877x10 1.6925x10 1.1702x10 1.6315x10
8r/10 1.3377x10 1.9670x10 1.3180x10 1.8974x10
91/10 1.4033x10 2.2734x10 1.3826x%10 2.1972x10
u 1.4134x10 2.5872x10 | 1.3926x10 1.472 2.5060x%10 3.139
107/10 1.4235x10 2.9011x10 1.4025x10 2.8147x10
127/10 1.4891x10 3.2075x10 1.4670x10 3.1145x10
137/10 1.6391x10 3.4820x%10 1.6149x10 3.3805x10
14m/10 1.8614x10 3.7028x10 1.4834x10 3.5912x10
157/10 2,1200%10 3.8808x10 | 2.0888x10 1.472 3.7589x10 3.141
16m/10 2,3787x10 4.0589x10 | 2.3436x10 3.9266x10
17n/10 2,6010x10 4.,2797x10 2.5627x10 4.1374%10
187/10 2,7510x10 4.5542x10 2.7104x10 4.4033x10
197/10 2.8166x10 4.8606x%10 2.7750x10 4.7031x10
2 2.8267x10 5.1744x10 2.7850x10 1.475 5.0119x10 3.140

Simulation of Odometer Navigation Systems (Fig. 4-7).

Non-Zero Heading Rate

Table 4-4



(m)

50

40

30

20

10

Simulation of Pure Odometer Navigator (Table 4-4)

X (meters)

Fig. 4-7

Approximation]
”
£ 4
7
Actual
|
y/
/
//4/ a = 10°
2 = 10°
y = 0°
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= 10 =
sec
§ = ~sin 2t
10 20 30
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Heading rate w = ¥ = -sin 2t

Flat Surface Tilt angle o = 8 = 10°
LRV velocity 10 meters per second
Initial heading 40 = -45°

Time LRV Horizontal Position
Actual Pure Odometer Approximation
X(m) Y (m) X(m) Y~error Y (m) Y-error
(%) (%)

0 0 0 0
/10 2.2910 2.1478 2,2572 2.0470
2m/10 4,9213 3.8504 4.8487 3.6457
3r/10 7.9236 4.7313 7.8068 4.4240
4m/10 1.1057x%10 4.7197 1.0894x10 4.3195
57/10 1.4145%10 4.1503 1.3936x10 1.478 3.6670 11,638
67T/10 1.3233x10 3.5808 1.6979x10 3.0145
77/10 2.0366x10 3.5693 2.0066x10 2.9100
8m/10 2.3369x10 4.4502 2.3024x10 3.6884
9m/10 2.5999x10 6.1529 2.5616x%10 5.2870
" 2.8290x10 8.3006 2,7873x10 1.474 7.3341 11.638
117/10 3.0581x10 1.0448x10 3.0130x10 9.3811
12m/10 3.3211x10 1.2151x10 3.2722%10 1.0980x%10
137/10 3.6214x10 1.3032x10 2.5680x10 1.1758x10
147/10 3.9347x10 1.3020x10 3.8767x10 1.1653x10
157/10 4.2435%10 1.2451x10 4.,1809x10 1.475 1.1001x10 11.646
l6m/10 4.5523%10 1.1881x10 4,4852x%10 1.0349x10
177/10 4.8656x10 1.1870x10 4.7939x10 1.0244%10
187/10 5.1659x10 1.2751x10 5.0897x10 1.1023x10
197/10 5.4289%x10 1.4454%10 5.3489x10 1.2621x10
2m 5.6580x10 1.6601x10 5.5746x10 1.474 1.4668x10 11.644

Simulation of Odometer Navigation Systems (Fig. 4-8).

Non-Zero Heading Rate

Table 4-5
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It has been noted that these navigation equations are valid only when the
terrain is flat and level. Any attempt to extend them to account for tilted ter-
rain will add a vertical and a directional sensor to the list of required hardware.
These are the same sensors required for the navigation equations described in Chap-
ter 5. Even if these sensors are added, the system that is produced by extending
this odometer navigation concept is inferior to the system described in Chapter
5. Clearly, the odometer navigation scheme looses its attractive simplicity when

it is pushed beyond the flat and level terrain.

However, a digital computer simulation was built to determine how well a
system using the equations for flat and level terrain would perform if it were
used on terrain that is actually tilted. Appendix A describes a technique for simu-
lating this problem. The results of this simulation are listed in Tables 4-1

through 4-5 and shown in Figs. 4-4 through 4-8.

In these tables and figures the angles o and B are used to define the tilted
plane. Let the level plane have orthogonal axes, x and y. Let the tilted plane
have orthogonal axes, x' and y'. Picture a line that is the intersection of the
x'y' tilted plane with a vertical plane that includes the x axis. o is the angle
between the x axis and this line. B is the angle between the y axis and the y'

axis (Fig. 4-9).

The heading angle, ¥, is the angle between the x' axis and the vehicle velo-
city vector. The sign of this angle is defined by noting that ¥ is between 0 to

90° if both the x' and y' components of the velocity are positive.

These simulation results show that the simple odometer navigation system can
be useful even when it is used on terrain with moderate tilt. In particular, it
appears that this scheme could provide a valuable back-up to a more complete dead
reckoning system that might be temporarily disabled. For example, a dead reckoning
package that obtains its direction reference by watching the sun would be tempo-
rarily disabled if it were shadowed.. The .odometer navigation system could be used
until the primary dead reckoning system is able to see the sun again and thus

regain its directional reference.
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Fig. 4-9
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CHAPTER 5

DEAD RECKONING MECHANIZATION PROBLEMS

In Chapter 3 the navigation equations for dead reckoning were examined.
These equations show that in order to instrument a dead reckoning navigation
scheme it is necessary to measure various quantities that can be combined to
determine the vehicle vector. These quantities include the forward speed of the
vehicle and the angles that define the vehicle orientation relative to some fixed
navigation coordinate system. Some of .the .hardware components that are available
to the system designer for making these measurements have been listed. The
following is a closer look at the ways that these instruments can be used and

at some of the problems associated with their use.

5.1. Odometers

If odometers are used to measure velocity a couple of interesting, poten-
tial problems arise. The most straight-forward approach to measuring the velo-
city vector is to assume that is is parallel to the vehicle longitudinal axis
and that its magnitude is proportional to the measured wheel rates. Unfortu-
nately this approach does not measure the velocity precisely when the LRV encoun-
ters an irregular lunar surface where it must climb over obstacles or whenever

it turns to the right or left.

Fig. 5-la shows the LRV climbing over a block. In this case the velocities
of the front and rear wheels are not even colinear. Neither of these velocities
are along the vehicle axis. Fig. 5-1b shows another situation where neither the
velocity of the frontnor rear wheels is along the longitudinal axis. Here the

LRV is traveling over rolling hills represented by a sine profile.

Fig. 5-2 shows another troublesome situation. When the LRV is going
around a turn the odometer for the outside wheel indicates a larger speed than
the odometer for the inside wheel. The selection of which signal to use must

be done carefully.

The pertinent question is "How do these discrepancies affect navigation
accuracy?" A feel for the answer to this question can be developed by consi-

dering some special cases that represent the problems described above.

42



N

<

(a)

(b)

LRV Traveling Over Irregular Surface

Fig. 5-1




Turning of a Pair of LRV Wheels

Fig. 5-2
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Going Over an Obstacle

First the problem of going over an obstacle will be considered. In Fig. 5-3
the vehicle is going over a spike that is as tall as the wheel radius. Two diffe-
rent types of errors are generated when the LRV rolls over a block. One type of
error is generated while the LRV rolls up onto the block and back off of the block.
A second type of error is generated while the LRV rolls across the top surface of
the block. Considering a spike rather than a block focuses our attention on the

first type of error.

The actual distance traveled by the vehicle while it is rolling over the
spike is X = 2R. 1If the front wheel odometers were used to measure velocity then

X', the computed horizontal travel would be

X' = [ Ra' cos 8 dt (5-1)
where a' is the measured a, by odometer. But
a' =a+8
X' =R J a' cos 6 dt + R [ 8 cos 6 dt

= R f cos 6§ da+R J cos 6 db6

Because of symmetry the value of the second integral for the period when
the wheel is going up is exactly cancelled by the integral for rthe period when

the wheel is going down. Now
m
X' =R J cos 8 da
0

From Fig. 5-3 it is seen that

L. sin 8 + R sin a

R2 2
cos 6 = 1 - — sin“ a
i 2
m RZ
X' =R J f 1 - — sin? a da
o} 1.2

so that

Now
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For an extreme case when R/L =.1/2, X' = 2,93R. Therefore the navigation

error accumulated while climbing over this spike is 0.93R.

This brief example demonstrates a problem that is present not only when
the vehicle is going over blocks or spikes but also whenever the vehicle encoun-

ters smooth, but rolling hills.

Curved Paths

Another problem in the use of odometers .is wheel slip. Obviously if the
wheels slip this can lead to an erroneous measure of the distance traveled.
One possible way to try to alleviate this problem is to use the odometer reading
from that wheel that is turning most slowly. In this way the signals from a
slipping, overspeeding wheel are ignored. However, this solution to one problem

can lead to another kind of trouble as shown in Fig. 5-4.

Here the vehicle is traveling on a smooth flat surface. The trajectory
consists of a series of arcs of circles of equal radii, r. The actual distance

traveled for one half cycle of this trajectory is
X = 2r sin —%— (5-2)

A navigation scheme that uses the odometer signals from the slowest wheel will
select the wheels on the inside of the turn. Consequently the computed dis-

tance traveled is
' dy §
X' = (r - E) ¥ cos ¥ dt
For one half cycle of travel

v /2 d
X' = f (r - 59 cosY dv¥
-v/2

X' = (2r - d) sin v/2
The resulting navigation error is
e=X'"~-X= (2r - d) sin %-— 2r sin %
e=-dsin ¥+ (5-3)



(a)

Distance traveled, non zero.

Lowest odometer reading
is zero!

(b)

LRV Following Curved Path

Fig. 5-4
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For an extreme case when the trajectory is a sequence of half circles so

that y = 7 radians, then

e = —-(d.

These simple examples show that any navigation system that uses odometers
must be carefully designed. These sources of error must be recognized and
examined to determine if they are small enough to be tolerable. If they cannot
be tolerated some plan must be devised to eliminate them. What follows is a
description of a scheme that could be used to eliminate the error in the velo-

city measurement that is caused by going over an irregular surface.

Velocity Measurement Technique

The signals from an inclinometer can be used, in conjunction with odo-
meters, to determine the velocity accurately. Again refer to Fig. 5-3. Let
a and b be the angular rates of the front and rear wheels relative to space.

Then the measured values of é and B will be

a' =8 +a
L] * L] (5_4)
B' =8 +b'

So that
i-d-h )
. j (5-5)
b=>»b' -9

The quantities on the right of (5-5) can be measured and a and b can be

easily computed. Now

IV ' = Ra
F (5-6)

‘VR’ = RbD

The axle separation is constant. Therefore
Vg = Ve iy (5-7)
(V,-V,) +i =0 (5-8)




The angular rate of the chassis is

(il xV_ -1

.1
=1 F

1 * VR)I

A

11 X (VF - VR)~

L =

and V_ and Vﬁ can be determined from (5-6), (5-7), and (5-8). Let

F

~ ~

F VF cosa i, + VF sina j,;

<
1]

~

R VR cosB i, + VR sinf 3

<l
n

Combining (5-7) and (5-11) produces

VF coso = VR cosB

Combining (5-10) and (5-11) gives

6L = i, x [(VF cos - VR cos B) i
+ (VF sin - Vp sin B) Jl]
From (5-11)
8L = (VF sino - VR sin B)

Taking © as positive for counter clockwise motion gives

L = VF sino - VR sinP

2
VR 2 .
8L = V 1l -(=—) cos B{-V, sin B
VF R

sin B + V_2 sin? 8

L4 2 .
(6L)“ + 6L VR R

(5-9)

(5-10)

(5-11)

(5-12)

(5-13)

(5-14)

(5-15)

(5-16)

(5-17)
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: : = 2. 2 _ (Aa1N2 _

26L VR sin B VF VR (L) (5-18)

2 _ 2 _ (¢ 2
A ve? - V.2 - (8L 519,

= sin 20L V
R
Similarly (5-12) and (5-15) can be manipulated to show that

V2 - V.2 + (§L)2

o = sin”} | R_ (5-20)
2 VF oL

Now equations are available for computing the wheel velocities. (5-5) gives
the magnitudes of the wheel velocities; (5-19) and (5-20) give the directions of

the velocities.

Unfortunately (5-19) and (5-20) fail when the velocities are equal vectors.
In this case 6 is zero and the right sides of (5-19) and (5-20) are indeter-

minate.

It might be tempting to say that the velocities must be directed along the
vehicle axis if the vehicle axis is not rotating so that 6 is zero. However,
Fig. 5-5b illustrates a case that violates such an assumption. The odometer and
inclinometer signals will be identical for the situations shown in Fig. 5-5a and

5-5b.

A second technique for determining the LRV velocity that does not suffer
from this ambiguity requires the addition of another sensing device, a ground
contact sensor. However, it does not use any measurement of the vehicle axis

angular rate as did the previously discussed method.

The ground contact sensor would measure the angle between the LRV axis, il,
and the radius to that part of the wheel that is in contact with the ground.

This angle is labeled C in Fig. 5-6. One possible way to instrument this sen-
sor might be the use of an array of strain gages mounted on the inside peri-
meter of the LRV wheels. The strain.gage that is in that part of the wheel that
is in contact with the surface would sense.the resulting deformation of the wheel.
Another device, either mechanical or photoelectric, would measure the attitude

of the wheel relative to the LRV axis. The signals from these two devices could

be combined to generate the angle C.

If C can be measured then the velocity can be resolved along the vehicle

axes.




(a)

(b)

Two Cases with Zero Angular Rate and Equal Elevation

Fig. 5-5
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Ground Contact Sensor Geometry

Fig. 5-6
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<3
1]

R$ [cos C_ i, + sin C

F 1 F jl] (5-21)

~

R8 [cos CR i + sin CR jl]

<
il

(5-22)

5-2., Accelerometers

An accelerometer is used to measure translational acceleration. Modern
accelerometers that are used in aerospace systems today are sophisticated refine-
ments of the simple concept illustrated in Fig. 5-7. If the accelerometer case
in Fig. 5-7 is accelerated along the .sensitive axis this mechanical system will
obey Newton's laws. The spring will be stretched so that its change in length
is proportional to the applied acceleration. Therefore, this reaction to the

applied acceleration can be used to measure the acceleration.

Two possible uses for accelerometers in dead reckoning navigation systems
will be discussed. First, it will be shown that accelerometers can be used to
instrument a strapped-down vertical sensor that will measure the roll and eleva-
tion angles of the platform.on which they are mounted. Secondly, it will be shown
how accelerometers should be used to determine the translational motion of a

strapped-down platform.

Strapped-Down Vertical Sensor

Consider two accelerometers mounted .on the LRV chassis with normal sensi-
tive axes as shown in Fig. 5-8. If the vehicle is not accelerating then the

instrument outputs will be

Accelerometer No. 1 output ag sin ©

Accelerometer No. 2 output = - ag cos 6 sin ¢

where ag is the local acceleration of gravity. Clearly these equations can be

used to determine 6 and ¢ from the accelerometer signals.

Measurement of Translational Motion

Accelerometers can also be used to measure translational motion. Three
accelerometers mounted on the LRV chassis with their sensitive axes along the

vehicle axes sense the acceleration of the point at which they are mounted.
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Fig. 5-7
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Instrument Number 2

Sensitive Axis along i}//’—-‘§§§\

\

N4

Instrument Number 1,
Sensitive Axis along 11

Two Strapped Down Accelerometers Used as a Vertical Sensor

Fig. 5-8
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The accelerometers signals can be used to write the acceleration vector of

that point as follows:

a=alytand gk

A

where il’ jl’ and k1 are unit vectors along the vehicle axes and a;1s ajl’
and a , are the signals from the accelerometers that have their sensitive axes

along these unit vectors.

This acceleration vector can be integrated twice in order to determine

the change in the vehicle position. However, it is important to notice that

change in position X% i J f a;j; dt + il f J ajl dt + kl J f a1 dt.

~

This is because the vehicle axes, i j and k are not fixed in space and
1° Jl’ P

1’
for this reason they cannot be brought out of the integration as is attempted

above.

The correct way to double integrate the acceleration vector is first to use
the direction cosines that relate the S1, vehicle fixed coordinates, to the S2
coordinates that are fixed in space and resolve the acceleration vector along
the fixed coordinates. Then the acceleration vector can be written as follows:

a=a;,i,+ aj?J? + akzk2
Now since i2’ j2’ and k2 are fixed in space the unit vectors can be brought

outside the integration so-that

s

1

.ot . - f
change in position = i J J a;, dt +j, J j 355 dt + k, J J a, , dt.

2

5-3. Two-Degree-of-Freedom Gyros

A two-degree-of-freedom gyro consists of a rotor supported by two gimbals
as shown in Fig. 5-9. This type of gyro can be mounted on a vehicle and used

to measure the vehicle orientation relative to some fixed coordinate system.

Ideally, the rotor spin axis direction remains unchanged even though the
vehicle rotates. Consequently, the angle between the two gimbals and the angle
between the outer gimbal and a reference direction on the vehicle both are func-

tions of vehicle orientation. These angles can be measured and the resulting
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Two-Degree—of-Freedom Gyro

Fig. 5-9
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measurement signals can be processed to determine the vehicle orientation.

The vehicle orientation will be described by a conventional set of three
Euler angles. The functions relating these Euler angles and the measured gim-
bal angles are determined by the choice of the spin axis direction and the gim-
bal arrangement. Interestingly enough, these functions are much more compli-
cated for some spin axis-gimbal combinations than for others. Therefore, pru-
dent choice of the gyro arrangement can greatly reduce the computation that is
required to determine the vehicle orientation from the measured gimbal angles.
Here this point will be demonstrated by comparing the nature of the gimbal

angles for six different combinations of spin axes and gimbals.

Next some of the factors involved in the selection of gimbal arrangements
will be illustrated by an example. Instruments will be selected to determine
the orientation of a vehicle for which the roll and elevation angles are

restricted while the heading is unrestricted.

Coordinate Systems

Two right-hand coordinate systems S1 and S2, introducted in Section 1-5,
will be used in this discussion. S2 is . a fixed, reference system; Sl is the
vehicle coordinate system and it rotates in.space with the vehicle. The Euler
angles ¥, 0, and ¢ shown in Fig. 5-10 describe the vehicle orientation relative
to the 52 coordinate system. 32 will be tcken 2s upward and { will be taken as
the vehicle longitudinal axis. Then ¥, 6, and ¢ conveniently become heading,

elevation, and roll angles.

Gimbal Arrangements

Fig. 5-11 shows six different spin-axis-gimbal arrangements. These six
combinations were generated by pointing the rotor spin axis along each of the
three coordinates of the fixed S2 coordinate system. For each of these spin
axis directions there are two ways to arrange the gimbals. This produces the

six combinations shown.

One angle that can be measured on.the gimbals will be called the inner
angle (IA). This angle is between the planes of the inner and outer gimbals.

The sides of this angle are shown for each gimbal arrangement.



3,31
Urt
1. Rotate S1 through the
angle ¥ about j3.
0
k2 v g
k . M1
)
)
\\ 8 2. Rotate S1 through the
Qt\\ angle § about kl'
ky
9
kl

3. Rotate S1 through the
angle ¢ about il'

Definition of Euler Angles

Fig. 5-10
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The second angle that can be measured will be called the outer angle (0A).
This angle is between the plane of the outer gimbal and one of the axes of the
vehicle fixed S1 coordinate system. The sides of this angle are shown for each

of the gimbal arrangements.

In Fig. 5-11 the cosines of the inner angle and the outer angle are listed
as functions of the Euler angles ¥, 6, and ¢ for each gimbal arrangement. As

promised earlier these functions have a wide range of complexity.

The derivation of these expressions is shown in Appendix B.

Gyro Selection

It will be assumed that two two-degree~of-freedom gyros must be selected

to measure the vehicle orientation by measuring ¥, 6, and ¢.

The first elimination of gimbal arrangements can be made by discarding
those that are vulnerable to gimbal lock for the type of rotation anticipated.
For example, in many applications such as a land vehicle, a submarine, a
commercial airliner, and even a lunar roving vehicle, the elevation and roll
angles will never approach 90°. However, for these same applications the
heading angle can take on any value.. For these applications gimbal arrange-
ments 1 and 5 must be discarded because.they will experience gimbal lock unless
heading angle is restricted. For other applications different restrictions on
vehicle rotation will cause different gimbal arrangements to be vulnerable to

gimbal lock.

Of the remaining four gimbal systems, apparently arrangement 4 should be
selected as one of the two instruments needed for this job. The inner and
outer angles of the gimbals in arrangement 4 are direct measurements of the

Euler angles 6 and ¢.

A second instrument must be chosen to determine the heading angle, ¥.
Arrangement 3 is of no use because its gimbal angles are independent of ¥. Gim-
bal arrangements 2 and 6 remain. For these systems the cosines of the inner
angles are much simpler functions than the cosines of the outer angles. There-
fore, the measurement of one of these inner angles should be used. For arrange-
ment 2 and 6 the cosines of the inner angles are equally complex functions of
¥, 6, and ¢. Arrangement 6 will be arbitrarily selected to measure the heading

angle.
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For arrangement 6
cos (IA) = cos ¢ sin 6 sin ¥ + sin ¢ cos V¥ (5-23)

The size of the inner angle (IA) .is measured, ¢ and 6 are available from the
gyro that was selected with a vertical axis. In order to determine ¥ these known

angles must be used in the above equations so that it becomes
A=3Bsin ¥ +C cos ¥ (5-24)

where A, B, and C are known constants. Now this transcendental equation must

be solved for ¥. It seems that this solution might be difficult to instrument.

Neglecting the Roll Angle, ¢

At this point it is tempting to go back to (5-23) and make the approximation
that the roll angke, ¢, is zero. Certainly for many applications the roll angle
is small most of the time. This approximation causes (5-23) to become simply

cos (IA) = sin 6 sin V¥ (5-25)

The effects of this approximation will be examined for two specific cases which

will show that this approximation cannot be tolerated.

First consider the case where ¥ = 0°, 6 = 10°, and ¢ = 10°.

cos (IA) = sin 10°
Using (5-25) ¥ is computed as follows:

sin_1 (cos (IA)/sin 90)

¥ computed

sin_l (sin 10°/sin 10°)

90°
Even this mild 10° roll angle caused a 90° error in the measure of Y.

The second case to be considered is ¥ = 90°, 6 = 10°, and ¢ = 10°. From (5-23)

cos (IA) = sin 10° cos 10°
Using (5-25)

sin”! (cos (IA)/sin 6)

Y computed

80°



64

This time the error in the computation of ¥ is 10°.

Apparently, approximating the roll angle as zero in (5-23) is an unsatis-

factory solution to this problem.

Roll Stabilized Directional Gyro

The requirement to solve .the transcendental equation (5-25) can be avoided
by using a roll stabilized directional gyro. The outer gimbal of a roll sta-
bilized gyro is not mounted to the vehicle. Instead it is mounted in a third

gimbal that is in turn mounted on the vehicle. This is shown in Fig. 5-12,

This third gimbal is slaved .to the .roll angle measured by the vertical gyro
so that the plane of gimbal remains vertical. This is accomplished by using a
control loop to force the angle shown as Q in Fig. 5-12 always to be equal to

the measured value of ¢.

Now the directional gyro actually .measures the orientation of the third
gimbal rather than the orientation .of the vehicle. The control loop described
above assures that ¢ is zero for the third gimbal. Fortunately, however, the
gimbal heading and elevation angles are .exactly the same as those for the
.vehicle. See Fig. 5-12. The fact that the roll angle is zero leads to the

following simple equation.

Elevated Inner Gimbal Axis

Now just as things were beginning to look good another problem appears. If
the elevation angle, 6 is zero the inner angle will be zero regardless of the
size of the heading angle, ¥. Once again, the elusive heading angle has suc-

ceeded in hiding itself.

Remember that two gimbal arrangements, 2 and 6 were candidates for the task
of determining Y. Arrangement 6 was arbitrarily chosen. Perhaps if arrangement

2 were mounted in a roll stabilized gimbal the present difficulty would go away.

Unfortunately, a quick check .of .Fig. 5-11 shows that arrangement 2 would
also be unable to provide an indication -of the heading angle when the elevation
is zero. Using the inner angle of arrangement 2 leads to the same problem
experienced with arrangement 6. Using the outer angle is too complicated. There-

fore, there is no good reason to abandon the arbitrarily selected arrangement 6
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in favor of arrangement 2.

The correct solution to this current problem is to elevate the outer gim-
bal relative to the vehicle axis. In this way the undesirable singularity of
(5-26) can be shifted so that it will occur only if the vehicle is elevated to
an angle that is outside the expected operating range. Fig. 5-13 shows a roll
stabilized directional gyro with an elevated outer gimbal. If 60 + 90° is the
angle between the outer gimbal axis and the vehicle longitudinal axis and Sg is

the elevation angle for the third gimbal then

cos (IA) = sin Sg sin V¥
cos (IA) = sin (9 + 60) sin V¥
Yy = sin_l(cos (IA)/sin (8 + 90) )

This last equation will not be indeterminate unless 8 goes to —60. Since R
will be selected outside the range of expected elevation values this arrange-

ment will successfully measure the heading angle.

Summarz

Fig. 5-14 shows the two instruments that have been selected to measure the
orientation of a vehicle with restricted elevation and roll angles. The amount

of computation that must be performed on the measured angles is indicated.

5-4. Rate Gyros and Computational Platforms

One system that will determine the complete vehicle orientation — heading,
elevation, and roll — 1is a strapped down, computational platform. The strapped
down platform uses three single-degree-of-freedom rate gyros mounted on the
vehicle to measure the rotation of the vehicle about each of its own axes.
Before looking at the equations for the strapped down platform, it will be
beneficial to study the way in which a single~degree-of-freedom, rate gyro works.

The following discussion is found in reference 1.
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Fig. 5-13
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Single-degree-of-freedom gyros

The fundamental relationship describing the motion of a rotating wheel under

the influence of an external torque perpendicular to the axis of spin of the body

is
T=uwzxIuw
s
where
T = torque about the input axis
IS = moment of inertia about the spin axis
w' = angular velocity about the spin axis
w = angular velocity about the precession axis
The angular momentum of the wheel is represented by
H=1 o'
s
so that
T=wxH

The relationship between the angular momentum vector, the torque vector,

and the precession vector may be seen in Fig. 5-15a.

A similar angular rate about the T-axis would produce a torque about the
precession axis. To avoid confusion about whether the input to the gyro is a
torque or an angular rate, the axes of a single-degree-of-freedom gyro are
usually labeled the spin axis or spin-reference axis (SRA); the input axis (IA);

and the precession or output axis (0OA). These axes are shown on Fig. 5-15b.

In the single-degree-of-freedom gyro shown in Fig. 5-15b, the spinning
wheel with its set of spin bearings has only one additional degree of freedom
with respect to the gyro case. An angular rate Wy about the input axis (IA)
will cause a precession torque about the output axis (0OA). The torques opposing
any gyroscopic torque about the output.axis are due to the inertia, viscous
damping, and spring-reaction torques acting on this axis. Thus, the sum of all

the torques acting on the OA is

T = Hw =Ioe+cé+1<e

where wy is the rate about the IA, Io is .the inertia about the 0A, C is the
damping about the OA, K is the spring constant about the OA, and 6 is the

angular precession or rotation about the OA.
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If the spring constant K is made .large compared with the inertia and
damping, the gyro has the following characteristics:
)
le K8

thus

o =8 (5-27)

or, the output angle is directly proportional to the input rate. Thus, the
gyro becomes a rate-measuring instrument. In this configuration, it is known
as a spring-restrained rate gyro. Equation (5-27) is exact for low frequencies,

but is in error near and above the resonant frequency determined by Io and K.

Some form of angular position pickoff, shown as signal generator (SG), may
be employed to provide an electrical output. A direct visual output in the form
of a pointer may also be used, as in the common turn-and-bank indicator employed
in aircraft. This type of gyro is commonly used to provide a rate of damping
signal to stabilize an autopilot system. For this type of gyro, the common
range of input rates varies from a few degrees per minute to hundreds of degrees
per second, although in any one instrument the linearity and null errors of the
gyro would probably be from 1 to 5 percent of full-scale rate. The typical error
sources of this type of gyro are pickoff and spring nulls not exactly aligned,
unbalance of the rotor or gimbal, and damping or other highly temperature-depen-

dent characteristics.

Computational Platform

Fig. 5-10 shows that three .Euler .angles, ¥, 0, and ¢, can be used to
describe the vehicle orientation. Three of the single-degree-of-freedom gyros
described above can be mounted on the LRV with their input axes along the
vehicle axes so that they will measure P, Q, and R, the vehicle pitch, yaw, and
roll rates. The following equations .give the rate of change of the Euler angles

as a function of P, Q, and R and the current values of the Euler angles.

§ = Q cos ¢ - R sin ¢

$ =P+ Qsin ¢ tan 6 + R cos ¢ tan 6

: sin¢ cos¢
¥=Q cosh cosB
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The Euler angles can be determined by integrating these Euler angle rates. The
block diagram in Fig. 5-16 illustrates the mechanization of these equations

that will generate a continuous measure of the vehicle orientation.

5~5. Solar Sensors

Photosensitive devices can be used to determine the vehicle's heading angle
by measuring the direction to the sun. Here five different ways to instrument
this measurement will be .described and compared. The five systems that will be
examined are distinguished by the type of sensors used and the way in which the

sensors are mounted. The five arrangements are:

1. Single axis, wide field of view sensor fixed to the
vehicle.

2. Single axis, narrow field of view sensor, pivoted
on the vehicle.

3. Single axis, wide field of view sensor, fixed to a
level platform.

4. Single axis, narrow field of view sensor, pivoted on
a level platform.

5. Two axis, narrow field of view sensor, tracking the

solar line of sight.

The trade-off's that must be made in order to select the one system that
is best suited for the LRV application will be examined by asking the following
questions about each system.

1. 1Is a single axis or a two axis sensor required?

2. What is the required sensor field of view?

3. How much computation is required?

4. How many mechanical gimbals must be controlled?

5. Must the value of the roll angle, ¢, be provided by
an external source?

6. Must the system be re-aimed at the sun if it is

temporarily shadowed by some obstacle?

Table 5-~1 summarizes the results of this comparison.
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It will be assumed that the same type of sensor will be used to instrument

each of the five systems.

This basic sensor will consist of a row of photo-

cells that are shielded from the sun by a reticle with a single slot as shown in

Fig. 5-17a.

The signals from the photocells are a direct indication of the

angle between the line of the photocells and . .the projection of the sun line of

sight into the plane normal to the slit.

This very simple device would measure

the same angle that is measured by the much more sophisticated sun aspect sen-

sors that are produced for aerospace applications.

Whether the output signal

from the sensor is digital or analog is irrelevant to this current geometric

discussion.

For some of the systems that will be discussed sensors with a narrow field

of view will be adequate.

can be used.

angles from 0 to 360 degrees.

sensors as shown in Fig. 5-17b.

In these cases a sensor like the one in Fig. 5-17a

Other systems will require .that the sensor be able to measure

This can.be accomplished by using an array of

5-17b will be called one sensor with a 360° field of view.

In the following discussion the array in Fig.

The sensor shown in Fig. 5-17a measures the angle between the photocell

line and the projection of the solar direction into the plane normal to the

slit. This is a single

Scancnroc avra
SOV LD Gaa e

the sun into two planes

this instrument will be

Solar Direction

~

axis .
that
that

calle

sensor .since .only one angle is
thev meacura anolee dofinoad hv
they measure angles defined by

are normal to the slits in the

d a two-axis sensor.

measured. If two

two sensors then

A unit vector, S, along the direction toward the sun can be resolved in

the fixed S2 coordinate system and in the vehicle referenced S1 coordinate sys-

tem.

A

For convenience leti2 be along.the projection into the horizontal plane

of the LOS from the vehicle to the sun.

be zero when the LRV is headed toward the sun.

In this way the heading angle, ¥, will

If b is the elevation angle of the solar LOS above the local horizon then

A

S =cos b i, + sin b i,

(5-28)
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Using the direction cosines that relate the.S2 and S1 coordinate systems shows

that the solar line of sight resolved along vehicle coordinates is

S = (cos b cos 6 cos ¥ + sin b sin 9) il

+(cos b (-cos ¢ sin 6 cos ¥ + sin ¢ sin ¥) + sin b sin 8

cos ¢) J; (5-29)

+(cos b (sin 6 cos ¥ sin ¢ + sin ¥ cos ¢) - sin b cos O

sin ¢) kl

System 1: One Sensor Fixed to the Vehicle

The first arrangement to be examined will be one sensor fixed to the vehicle.
This approach requires that the sensor have a 360° field of view in order to

assure that the solar direction can always be measured.

Initially, it will be assumed that the sun aspect sensor will be strapped
down to the LRV with the reticle slit and the line of the photocells along two
of the vehicle axes. There are six .such.orientations and they are listed in
Table 5-2 along with the cosine of the angle.that is measured for each orienta-
tion. Equation (5-29) was used to develop these expressions for the measured

angle cosines.

Let it be assumed that & and .¢ are measured with the inclinometer or a
vertical gyro and that b, the elevation of the sun, is known from the lunar
ephemeris. Still the solution of one of these transcendental expressions is a
discouragingly complicated task. Unfortunately, though, one of these expressions

must be solved if a strapped down sun sensor is used to measure VY.

The sensor has a 360° field of view. Therefore this system will not have

to be re-aimed at the sun if the line of sight is temproarily interrupted.

System 2: One Sensor Pivoted on the Vehicle

The second scheme is geometrically very similar to the first. A single axis,
narrow field of view sensor is .mounted so that it can rotate about an axis normal
to the vehicle as shown in Fig. 5-18.. This gimbaled sensor is pointed by a

tracking loop that uses the sensor signals to keep it pointed at the solar plane.

The mechanical gimbal angle is the same as the angle measured by a strapped down



Direction Cosine
S1lit of Line of Projection of Measured
Direction Photocells Plane Angle
S,
—_
. . . 2 2
1 i, 3 Jlkl W’Sj + Sk
%k
. 2 2
2 il kl Jlkl W,Sj + Sk
%
. . 2 2
3 iy kl 11kl W/Si + Sk
S.
—_—r
. . . 2 2
4 iy i llkl ‘Vsi + Sk
S,
-
. . . 2 2
5 kl i i34 “’Si + Sj
S,
_—J
6 k . .. I 2 2
1 3y 113 ~51° Sy
Si = cos b cos 6 cos ¥ + sinb sin 6
Sj = cos b [sin ¢ sin ¥ - cos ¢ sin 8] + sin b cos 6 cos ¢
Sk = cos b [sin 6 cos ¥ sin ¢ + sin ¥ cos ¢} - sin b cos O sin ¢

Cosines of Angles Measured by Strap-Down Sensor

Table 5-2
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S, Solar Direction
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Fig. 5-18



sensor with the slit along j1 and the photocell line along il’ which is number
4 in Table 5-2. Therefore, the solution of .a complicated, transcendental func-
tion of 6, ¢, b, and ¥ is still required in order to determine ¥. If the sensor

is shadowed it must be re-aimed at the sun.

System 3: One Sensor Fixed to a Level Platform

One way to avoid the solution.of the transcendental equation to get ¥ is to
abandon the idea of mounting the sensor to.the vehicle and instead mount it on
a level platform for which 6 and ¢ are zero and for which ¥ is the same as the

vehicle heading angle. Fig. 5-19 shows such an arrangement.

It is assumed that the gimbal .angles are somehow set so that the platform
is level, that is, parallel to the £2£2 plane. The discussion of how this can
be done will be temporarily postponed. .It.is not immediately obvious that the
constraint that the platform be level will cause the platform heading angle to
be the same as the vehicle heading angle. That this is true will now be demon-

strated.

~

The vehicle heading angle is the angle between i, and the projection of

A 2
i1 into the izk2 plane. This projection will be called p.

~ ~ ~ ~

P= (i, v i) 1, + (1, * k) k,

One edge of the platform in Fig. 5-19 is along j2 X (ilij)' This direc-
tion will be considered for the forward direction for the platform. If these

cross products are evaluated,

j2 X (il X j2) = (il . i2) i2 + (il . k2) k2

It is now seen that the platform forward direction along this edge of the
platform is the same as the projection of the vehicle forward axis into the
12k2 level plane. Therefore, the platform heading angle is the same as the

vehicle heading angle.

The sensor shown in Fig. 5-19 will directly measure the angle between plat-
form forward axis and the projection of the solar line of sight into the plane
of the level platform. This means that the sensors directly measure the plat-

form heading angle and consequently directly measure the vehicle heading angle.
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Mounting the sensor on the level platform has eliminated the computation
that was required to determine Y from the output of a strapped down sensor.

In fact, the gimbal system actually serves as a sort of analog angle computer.

Since this system uses a sensor with a 360° field of view it will not

need to be re-~aimed if the reticle is temporarily shadowed.

System 4: One Sensor Pivoted on a Level Platform

The fourth way to use a solar sensor to determine the LRV heading angle is
to mount a single axis, narrow field of view sensor on a level platform so that
it can pivot about an axis normal to the platform. Then a closed tracking loop
can use the signals from the sensor to keep it pointed at the sun. This is a
combination of the tracking loop from system 2 and the level platform of system
3. As in system 3 the vehicle heading angle is measured directly. For this
system the heading angle is indicated by the angle of the gimbal driven by the

tracking loop.

If the sensor used in this system is temporarily shadowed it will have to

be re-aimed at the sun so that the tracking loop can re-acquire its solar target.

Level Platform Mechanization

At least two techni 5 1z the gimbaled

latform
for system 3 and 4. The first approach is to .simply hand a plumb bob on the
platform. The bob would level the gimbaled platform. This approach suffers
from the disadvantage that the platform would swing whenever the vehicle accele-

rated either laterally or longitudinally.

A second approach eliminates this difficulty. Closed loop control systems
can be used to slave the gimbal angles to.the elevation and roll angles measured
on a vertical gyro. The outer gimbal .angle should be maintained equal to the
measured value of roll; the inner gimbal angle should be forced to be equal to
the measured value of elevation. Such a control loop would cause the platform

to remain level as is required.

System 5: Two Sensors Mounted on a Gimbaled Platform that Tracks the Solar Line

of Sight

Each of the systems previously discussed used only one sensor and either
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measured or tracked the plane defined by -the solar line of sight and some
reference direction, either the local vertical or the direction normal to the
vehicle chassis. This final scheme is different in that two sensors are used
and the solar direction is tracked rather than the solar plane. Here two sen-~
sors or equivalently one two .axis .sensor is mounted on a two-degree-of-freedom

platform that is supported by an inner and an outer gimbal.

One way to arrange the gimbals is shown in Fig. 5-20. If the outer gim-
bal axis were normal to the vehicle chassis the system would be vulnerable to
gimbal lock when the sun was nearly overhead. . The arrangement shown in Fig,
5-20 has the outer gimbal axis parallel .to .the chassis so that the system does
not experience gimbal lock difficulties .when the sun is overhead. For this

system gimbal lock can occur only when the sun is near the horizon.

For this arrangement the gimbal .can be used to measure the angle between

the solar line of sight and il. The cosine of this angle is as follows:

cos (Inner Angle) = cos b cos 6 cos ¥ + sin b sin 9

No other arrangement of two gimbals can produce a gimbal angle that is a simpler

function than this one.

Given b and ¢ the inner angle can be measured and the above linear equation

for the cosine of ¥ can be solved to determine V.

. .
drnnn Fhia avetrAam nona
LaC8 AL SYSTCMm usio

narrow field of view instruments it would need to

be re-aimed at the sun if the sensors were temporarily shadowed.

Summarz

The following five techniques for using solar sensors to determine the

vehicle heading angle have been described.

1. Single axis, wide field of view sensor fixed to
vehicle.

2. Single axis, narrow field of view sensor, pivoted
on vehicle.

3. Single axis, wide field of view sensor, fixed to
level platform.

4. Single axis, narrow field of view sensor, pivoted
on the level platform.

5. Two axis, narrow field of view sensor, tracking the

solar line of sight.



S, Solar Direction
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The first system is mechanically simple because the sensor is fixed to
the vehicle. However, the angles that can be measured by these strapped down
sensors are complicated, transcendental functions of ¥, 6, ¢, and b. Extracting

Y from the sensor output would require considerable computation.

The second system is comparable to the first in that it too would require
the same computations to determine ¥ from the measured angle. Here, however,
the requirement for a wide field of view sensor is eliminated by providing a
mechanical tracking loop that enables the narrow field of view sensor to track

the solar plane.

System 3 fixes the sensor to a.level platform and thereby eliminates the
computation that was required to determine ¥ from the sensor signals. Actually
the computation task has been traded for the new problem of instrumenting a

gimbaled level platform.

System 4 is comparable to system 3. Here too the heading angle is measured
directly. Now, however, a narrow field of view sensor is used rather than a
wide field of view sensor. A tracking loop is required to keep the sensor

pointed at the solar plane.

System 5 is distinguished from the others in that it does not require know-
ledge of the roll angle, ¢, from an external source. It is the only system
that uses a two-axis sensor. The cosine of the measured angle is linearly
relared fo the cosine of ¥ so that the computational requirements are not as

extreme as they were for systems 1 and 2.

Some of the features of these five systems are compared in Table 5-1.

5-6. Pendulous Inclinometer

The most obvious method for determining the vertical is with a pendulous
inclinometer. A two-degree~of-freedom.pendulum can be used to measure the same
roll and elevation angles that are measured by a two-degree-of-freedom vertical
gyro. The attractive features of a pendulum are its light weight and its simpli~
city. However, the pendulous inclinometer suffers from the essential disadvantage

that it swings when the LRV accelerates either forward or laterally.

The important question is 'How .does this swinging affect navigation accuracy?"

Some feel for the answer to this question is provided by the following discussion.
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Figure 5-21 shows a pendulum mounted on the LRV, For small § the accele-

ration along il of the bob is

The force on the bob along il i
F = mgd + B4
where B is a measure of the pendulum damping. Consequently,
mgd + BS = ma - mdg

Using Laplace Transforms

_ a(s) 1
§(s) .

If the damping constant, B, is set at 1.41fm 1\/ gd so that the damping ratio is

0.707 then the deflection caused by a step of acceleration is

-707\ g/d t
g-[ 1 - 1.414e cos .707ﬂ¢[§T t]

For a 10 cm. pendulum and for g = 162 cm/sec? on the lunar surface the value

of g/d is 4.03 rad/sec. Then

§(t) =

-2.84t
§(t) = g-[ 1 - 1.414 e cos 2.84 t] (5-30)

If the LRV starts from zero speed and accelerates with constant acceleration
to some final speed then the duration of .the acceleration and the distance

covered while accelerating are given by (5-31) and (5-32).

T(sec) =0.171 v/c (5-31)
S(km) = 2.38 x 107° ¥2 (5-32)
where
v = LRV final speed in km./hr.
¢ = ratio of the LRV acceleration to the lunar surface

gravity.



Pendulum Mounted on the LRV

Fig. 5-21



For v > 10 km/hr and ¢ < 1, T is greater .than or equal to 1.7l seconds. Con-
sequently, (5-30) says that for most of the acceleration period § can be

! closely approximated as a/g radians.

Assume that the acceleration and velocity are in the horizontal plane.
The swinging pendulum will erroneously indicate that the LRV is tilted § radians

relative to the vertical. The resulting dead reckoning navigation errors will
. be

1]

horizontal error = S (1 - cosf)

S siné

vertical error

Since § will be a small angle the first two terms of the cosine series will be
used to approximate cosS and the first term of the sine series will be used to

approximate siné. Then

horizontal error == § (—)

- -~ rd . AY
=1.19 x i0 cv (meiers)

vertical error

1]
w3
oo o

3

=2.38 x 10 v2 (meters)

where ¢ and v are as defined above.

These equations say that accelerating at 1/5 lunar gravity to 15 km/hr

generates 0.0535 meters horizontal error and 0.536 meters vertical error.




5.7. Sensor Combinations for Determining Orientation

This chapter has discussed several individual instruments that can be used
in a dead reckoning navigation system to help measure the vehicle orientation.
Table 5.3 lists eight potential ways that these instruments might be combined to

determine the LRV orientation.
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Instruments Comments

1. Omne gyro None of these will work exactly because
there is not enough information in one
reference direction to define H.

2. One sun sensor Errors that are a function of the LRV

elevation and roll angles will occur if
one of these systems are used.

3. Two sun sensors
4, Two gyros Permits determination of vehicle's
complete orientation. Gimbal arrange-
ments have been investigated.
5. One gyro and an Geometrically equivalent to two gyro
inclinometer system. Inclinometer replaces verti-~
cal gyro.
6. Sun sensor and vertical Permits determination of vehicle's
gyro complete orientation. Mechanization
has been investigated.
7. Sun sensor and inclin- Geometrically equivalent to sun sensor
ometer and vertical gyro system. Inclinometer
replaces vertical gyro.
8. Computational platform Digital computation requirements are

with three rate gyros
fixed to the LRV

high. Equations for mechanization are
in Section 5.4.

Heading Angle Determination

Table 5-3
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CHAPTER 6

CELESTIAL AND SATELLITE POSITION FIX SCHEMES

6-1. Introduction

A trans-lunar excursion is planned for the DLRV. This explorative journey
will take about one year and cover about 1000 km. Astronauts will rendezvous
with the LRV after it finishes its trip across the moon. In order to provide
the navigation accuracy required for this DLRV mission, periodic position fixes

will be needed to update the dead reckoning navigator.

Three possible techniques for position fixing are:
1. Celestial sightings;
2. Satellite sightings;
3. Landmark sightings.
Each of these broad categories of position fixing techniques includes several
specific position fixing schemes. What follows is a description and analysis
of some celestial and satellite .position fix techniques. Techniques based on

landmark sightings will be discussed in Chapter 7.

In this description and comparison .of several celestial and satel-
lite position fix schemes the assumption will be made that the moon is a smooth
sphere. This assumption will significantly simplify the geometry but will not
obscure the inherent, geometric advantages and difficulties of the various
position fix concepts. Therefore, a meaningful comparison of the position fix

techniques can be made under the assumption that the moon is a smooth sphere.

Once the comparison of the schemes has indicated which position fix con-
cepts are best suited to the LRV application then the smooth sphere assumption
can be removed and the selected position fix concepts can be examined very pre-

cisely.

An important first question in the comparison of lunar position fixing
techniques is whether a satisfactory position fix can be established from celes-
tial sightings. The use of celestial sightings is relatively attractive when
compared with the use of a navigational satellite simply because it avoids the

requirements for having a navigational satellite in lunar orbit.
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Two schemes for establishing a position fix based on celestial sightings
will be examined here. One scheme uses the measurement of angles between a land-
mark on the earth and two different stellar directions. The second uses the
measurement of angles between the local vertical and two different stellar direc-

tions.

TRANSIT, a network of satellites for navigation, has been developed for
the U. S. Navy. This navigation satellite system is operational and it does
provide precise position fix information to ships at sea. The success of this
system suggests that using an artificial satellite in lunar orbit should be

considered for the LRV position fixing requirement.

There are several ways to establish a position fix by observing a naviga-
tional satellite for which the orbital parameters are known. The satellite's
orbital parameters include enough information to completely define that satellite's
position and velocity at any instant of time. Any scheme that determines the
LRV position relative to this satellite «of known position will obviously provide

a position f£ix for the LRV.

Three specific schemes will be described that assume that the orbital

parameters are known and available. These schemes are based on measurement of:

1. LRV to satellite range
2. LRV to satellite range rate

3. Angles provided by satellite tracking

The second scheme is the one used for the TRANSIT system.

6-2. Sensitivity Analysis Technique

A mathematical technique described in Battin's Astronautical Guidance will

be used here to develop expressions that relate the accuracy of a position fix
to the position fix geometry and .the precision with which the basic measurements
are made. Obviously these equations will help in the selection of advantageous

position fix schemes.
In this first analysis the following assumptions will be made:

1. The moon is a smooth sphere.
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2. The LRV clock is perfect so that all
measurements are made at known instants
of time.

3. The lunar ephemeris is known exactly.

Since the moon is assumed to be spherical, the length of'?, the vector from
the moon's center to the LRV position, is assumed to be a known constant. Two
more parameters are needed to define the direction of r and thus complete the
description of the LRV position. Consequently, two measurements must be made to
establish a position fix. When celestial sightings are used these two measure-
ments are celestial angles. Later the use of a navigation satellite for position
fixing is considered. Then the two measurements are either angle, range, or
range rate measurements. In any case the two measurements will be named qq and
qy

Clearly the values of q and q, depend on T. It will be shown that if the
LRV moves about a reference point in a region that is small enough so that all
changes can be taken as first order differentials, that is, small enough so that

the relation between the q's and r can be linearized then

Aql =h, * Ar
_ (6-1)
bq, = h, * Ar

Ar is the deviation of T from the reference value ;;; Aq is the deviation

of q from the reference value q,-

17 9 7 %0 (6-2)

bqy =4y - 4y,

Equation (6-1) shows that each measurement establishes the component of

AT along some vector, either Ei or h2.

Since |Ar| is assumed to be small relative to |T| it can be further assumed
that Ar is in a plane normal to ;; and consequently Ar, Hi, and Hé can be resolved

~

along two normal coordinates, £ and m in that plane.



Ar = Ar 2 + Arm
m

h, =h, % +h.m

1 12 Im
h2 = hZZQ + h2mm
Then
Aqy Bie M bry
= (6~3)
Aq2 h22 h2m Arm
or _ i
Aq = HAT (6-4)
The inverse relation is
Arg h2m —hlm Aql
1
(6-5)
h, h - h, h
Ar 1272 1m 2% —th h12 qu
or
5T = 0! ag (6-6)

rt
(4]

However, this relation is closely connected to the sensitivity of position fixing

accuracy to measurement errors.

In the following equations primed variables represent measured or estimated

values.
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If Ar' = H 'Aq' as suggested by (6-6) then
e_ = Ar' - Ar

-t (Aq’- Aq) = n! E& (6-7)

Looking back it is seen that the H matrix determined for (6-3) is useful
because it is later used in (6-7) to relate measurement errors and position fix

error.
The magnitude of the position fix error vector is simply the square root of

— _— — — 1. T 1=
|e |2 = e T e = e T (H 1) H 1e
r r r q

-1.T _
If (H l) H 1is denoted by the matrix B as

T o, | P P2
(H") H =
Po1 bzzJ
then
el2=a%c =T @Hlu!
T r r q q
b, . b.. ) [ es. )
R 1l j Ml 5 2
= (eql eqz} =bll eq + b22 e + (b12+b21)e
Pa1 Pax | | eqp

If eq and e are independent random variables then the expected value of
1 2

= 127 = Z 2
E [|er| ] =b;; E [eql] +b,, E [eql]

\

Taking the square root of both sides of the above equation yields

- _ 2 1/2
RMS [|er| ]= {b_. RMS [eql] +b

2
11 RMS [eqz]}

22
This last equation gives the root mean square of the position fix error in

terms of the RMS values of the measurement errors and the position fix geometry.

This expression will be valuable for the comparison of various position fixing

schemes.
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Since H is only a two by two matrix, b.. and b22 are easily determined:

11

h2m -hlm
By Pim IR TR )
H = H = D
Boy  Bom
h -h h -h, |
1T -1 1 2m 2% 2m 1m
(B 1" H = =
D
R ) RY) by
. = 2 2 2
by = (hgy +h3 ) /D
= (h2 2 2
byy = (hyg +h7) /D
where
D=hyy Bon ™ Bog By
In ihe followiug discussion several celestial and catellite position fiving

techniques will be compared by examining the H matrix for each of the schemes.

6-3. Celestial Position Fix Scheme I - Earth Landmark and Two Stellar Directions

The angle that a navigator can observe between a known stellar direction
and a known landmark on a nearby planet establishes a conical locus of his posi-
tion in space. By measuring the angle between the same landmark and a second
known stellar direction the navigator can .establish a second conical locus for
his position. These loci are shown .in.Fig. 6~1. Now the navigator knows that
he must be located at the mutual intersection of these two cones and the lunar
sphere. There will be at least two such mutual intersections. A priori infor-

mation can be used to select which intersection is the actual LRV location.
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Sensitivity Analysis

The measured angle between .the landmark on a nearby planet and a stellar
direction is most sensitive to motion .of the LRV when the nearby landmark is
nearly above the LRV and the LRV travels in the plane defined by the stellar
direction and the line from.the center .of the .moon to the landmark. Unfortunately,

even for this case the geometric sensitivity of this sighting is as follows:

aq = L22L

R-r

where Ar is a small change in the LRV position vector, Aq is the corresponding
small change in the measured angle, r is the radius of the moon, and R is the

distance from the center of the moon to the landmark.

If R is taken as 385 x 103 km, the distance from the center of the moon to

the earth; and r is taken as 1738 km, the mean radius of the moon, then
AqQ = 2.6 x 10°°|AT]

This means that if the LRV moved 5 km, the resulting change in the basic angles
that .are measured for . .this scheme would be.less than 0.8 x 10—3 degrees. Con-
versely, a measurement error of only 0.8 x 10”3 degree would cause a position

fix error of at least 5 km.

This concept is not attractive for the LRV application because the position

fix accuracy is too sensitive to small measurement errors.

The relation between the measured angles and changes in the LRV position is

shown below:

r 3 { . |
, $in Yy, cosa, 1 (sin sina. - R cos sinB) Ar
0 e F et s Y 17 7P 1 %
A il S L (sina, sino -2 cos sinB) Ar
L q2 J P sin q2 P sin q2 2 2 P 2 ) \ m
or
Ar
v 1
siny. siny. sin (o.-0.) + X sing (cosq, siny, cosa, - cosq, siny, cosa.)
, 1 9 27% P 1 2 2 2 1 1
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; . . R ; . . : R ;
P sing, (51nyl sina, - 7 cosq, sinB) -P sing, siny, sina, - § cosq, sinB)
-P sing; siny, cosa, P sing, siny, cosa; J
Aql
qu

The derivation of these equations is shown in Appendix C. The meaning of

the variables in these equations are illustrated in Fig. 6-2.

Position Fix Computation

The following three simultaneous equations can be solved for the LRV coordi-
nates. The angles in these equations are defined in Fig. 6-3. These equations

are derived in Appendix D.

- x Y2¢1 _ 2 _2_2, 2
(x xE) (1 coéLlcosilsecql) + (y yE) (1 cosL151n%lsecq1) +

2 2
(z—zw)z(l-sirzlL1se%q1)+(x—xv)(y—yv)sin2>\,(2—co§L,secq,)-(y—yn)(z—zn)sinZL,sinAlsecql -
a— < e i e 4 £ 4 1 E AL

. 2 =
(z—zE)(x-xE)s1n2Llcos>\lsecql 0

_ 21 2 2 2 _ 2042 L2 2
(x xE) (1 costcoskzsecq2)+(y yE) (1 cosL231nkzsecq2) +
(z-2_)2(1-sifl, secq, )+(x-x_) (y-y_)sin, (2-cosh, sesq,)
z-zg sinl,secq, x-xp) (y-yp)sind, (2-cosi,secq,

2 2
(y—yE)(z—zE)51n2L231n)\zsecq2—(z-zE)(x—xE)51n2L2cos)\zsecq2 =0

X2+ y2+ z2= ¢?

where
xE = R coskE cos LE
Vg = R 31nAE‘cos LE
z, =R sin L

E E
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Here x, y, and z form a lunar coordinate system with its origin at the moon's
center. The z axis passes through the north pole as shown in Fig. 6-3. The

x and y axes are in the equatorial plane.

6.4 Celestial Position Fix Scheme II - Local Vertical and Two Stellar Directions

In Fig. 6-4 it is shown that a navigator can establish a circular locus of
position on the spherical lunar surface by measuring the angle between the
local vertical and a known stellar direction. A second, similar locus of posi-
tion can be generated by measuring the angle between the local vertical and a
second known stellar direction (see Fig. 6-5). The LRV location is at one of
the intersections of the two circular loci. The navigator uses the approximate
LRV position provided by the dead reckoning system to select the correct inter-

section.

Sensitivity Analysis

The relation between changes in the LRV position to changes in the measured
angles is shown below. The variables are defined in Fig. 6-6. The derivation

is in Appendix C.

{uq 3 /_l o N ’Ar N
1 r A
Aq - = cosa -sina Ar
2J v T r J \ m )
or
3 ' 3\ ‘
Arl -r o Aql 3
Ar r coto -r csca Aq
mJ J L 2J
However,
ATl2 = 2 2
| AT (Arg) + (Arm)

- 2 _ - 2
( rAq,)“ + (r cota Aq; - r csca - Aq,)

|ar}? = r2 (csc2a Aql2 + csc?a qu2 - 2 cota csca bq, qu)
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If eql and eq2 are independent random variables with equal RMS value, then

E (Aql qu) =0

RMS (Aqq) = RMS (Ag,) A RMS (4q)

Therefore, the RMS value of |AT| is

RMS (|A?|) = A/E[rz(csczaAqlz + csczaqu - 2 coto csco Aql qu)]
= 2
fo_r csc?a RMS (Aq)

This is minimized by selecting s \ SZ’ i.e., a = 90°; then

RMS (|Ar|) = AJ2 r RMS (Aq)

The radius of the moon is 1738 km.

RMS (|ar|)

2460 km x RMS (Aq)

An error in angle measurement, Aq, of 0.05° would give a position fix error, Ar,
of 1.5 km.

The most serious probliem encountered in trying to make the required measure-

ments of the angles between the stellar directions and the geometric vertical is
that the local vertical indicated by the gravity sensitive device will not be
the same as the geometric vertical. Reference 4 indicates that the nominal 30
value of this vertical anomaly is 0.05°, which means that position fix error so

caused would be 1.5 km.

Another feature of this position fixing concept should be mentioned. Any
attempt to extend this concept .and .use it to estimate the altitude of the LRV on
a non-spherical moon will fail because the angles measured are completely insen-—

sitive to the radial distance of the LRV from the center of the moon.

Position Fix Computation

The following equations for the LRV coordinates are derived in Appendix D.
The variables used here are shown in Fig. 6-5. The solution of these two equa-

tions for A and L give the LRV position.
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cosq; - sinL. sin L cosq, - sinL, sinL

1 -1 2
cosLl cosL )+ cos ( cosL

)

cosL2

cosq1 - sinLl sinL

cosLl cosL

A=A, + cos (

1 )

6-5. Navigation Satellite Scheme I - LRV to Satellite Range

If the moon is assumed to be a smooth sphere, then two range measurements
made at two different times are sufficient to determine the LRV position. Each
measurement of the distance from the LRV to .the satellite establishes a circular
locus on the lunar surface. These circles have two intersections, one of which
is the measured LRV position. The estimate of the LRV position provided by the
dead reckoning navigator is used to select the intersection that is the LRV loca-

tion.

For this position fixing concept the measured parameters, 9 and 9y, are
the ranges measured from the LRV to the satellite at two different instants of

time.

Sensitivity Analysis

The equation relates changes in the . LRV position to changes in the measured

ranges as shown below. The meanings of the variables are illustrated in Fig. 6-7.

Aql cos El o Ar2
qu cos E2 cosa cos E2 sino Arm
or
Arl sec El o Arz
l
m 2 2 m

|
|
l
Ar {-cot E, cosa cos E, sina | Ar |
|
|
|

The derivations of these equations are in Appendix E, Section E-1.
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Position Fix Computation

The equations of the position fix for this scheme are shown below. Fig. 6-8

defines the variables that are in these equations.

N -1 cosBl—91nLlslnL . cos_l cos62—51nL251nL

2 R cosL, cosL cosL, cosL

cosB,-sinl_sinL
A=A, + cos_1 1 1
1 cosLl cosL
where

2. 2_. 2 2 2. 2
cos. = r +(r+Rl) q; . - r +(r+R2) 4,

1 2r (r+Rl) ’ cosk, 2r (r+R2)

The LRV position on the lunar surface can be determined by solving these equations

for A and L, the LRV longitude and latitude.

The derivation of these equations is shown in Appendix F, Section F-1.

6-6. Navigation Satellite Scheme II - LRV to Satellite Range Rate

The TRANSIT navigation system uses range rate measurements made with a doppler

radar. It is possible to discuss this navigation scheme by deriving equations
for the position fix in terms of the doppler beat frequency. However, it is just
as easy to look at this navigation concept in terms of the geometric parameters
involved. This latter approach is more consistent with the descriptions that
have been given here for other position fixing schemes. Fig. 6-9 shows the

scheme.

Fig. 6-10 shows the satellite a.short time before the time of its closest
approach to the LRV. At the time when the navigator detects a silent beat on
doppler radar, it is the time that the line of sight to the satellite perpendicu-
lar to the satellite path. Let that time be to and the distance from LRV to the
satellite at to be Ro; then the value of Ro can be calculated if we know the
second derivative of range R at to when the range vector is perpendicular to

satellite's orbit.
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The relation between Ro and R at t = to is (see Appendix E, Section E-2).

Since it is assumed that the satellite orbital parameters are known, the
position and velocity of the satellite at t0 is assumed to be known. Therefore,
the last equation establishes a circular locus of position of radius RO for the
LRV. The plane of this circle contains the position of the satellite at to and
is normal to the satellite trajectory at this point. This circular locus of
position intersects the lunar surface at two .points, one of which is the mea-
sured LRV position. Information from the dead reckoning navigator is used to

select the intersection that is the LRV position.

Sensitivity Analysis

An imperfection, a bias, in the doppler radar will cause the measured range

rate, R', to differ from the actual range rate.

R' = R + AR
The effect of AR will cause an error in the radius of the locus of position.

3 3 ARy _
e Ro [sec® ( V) 1]

The detailed derivations of the equations are in Appendix E, Section E-2.

If the satellite orbital radius is 1838 km, 100 km above the lunar surface,
then V = 8250 km/sec. Reference 4 gives 20 km/hr. as the nominal three sigma
bias for doppler measurements of satellite range rate. If these numbers are used
with an assumed value of 200 km for Ro, the range from the satellite to the LRV,
then the circular locus of position is erroneously shifted 0.485 km. The error

in the estimation of the locus of position radius is only 0.017 km.

This arbitrary selected example indicates that this scheme can be used to
determine the LRV position relative to .the satellite with greater accuracy than

is offered by either of the celestial sighting schemes.
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Position Fix Computation

The equations of position fix for this scheme are derived in Appendix F,

Section F-2, and repeated below.

"
[]

x' sina + y' cosa cosb + z' sina cosb

y = -x' cosa + y' sina cosb + z' sina sin b
z = -y' sinb + z' cosb

where x', y', and z' are solved from the following equations
{x' + R cosLS cos(AS + a)}2 + {z' - R[cosLs sinb sin (AS + a) + sinLS cosb]}? = Rg
y' =R [cosLs cosb sin (XS + a) - sinLS sinb]
x'2 4 y'2 4 512 = g2

Here x, y, and z are the same lunar coordinates that were defined in Section
6-3. The x', y', and z' axes are so defined that y' is in the direction of the
satellite's velocity, x' is perpendicular to y' and in the xy plane. z' is per-

pendicular to both x' and y' in accordance with right-hand rule. (See Fig. 6-11).

6-7. Navigation Satellite Scheme III - Angles Between Line of Sight (LOS) and
Local Vertical

Position fixing schemes that use angle tracking of a navigational satellite
are geometrically related to the concepts discussed under celestial sightings.
Now the artificial lunar satellite serves as a very close-by celestial neighbor.
The closeness of this new '"celestial" body causes some of the angles defined by
its position to be more sensitive to the LRV position than angles defined by the
position of other celestial bodies. .In this .respect the satellite is superior

to the sun, earth, and other planets as a celestial reference.

There are at least two ways to establish a position fix by angle tracking

a satellite as it passes overhead.
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1. Measure at two instants the angle between the local
vertical and the LOS from the LRV to the satellite.

2. Measure at two instants the angle between a known
stellar direction and the LOS from the LRV to the

satellite.

Either of these sets of measurements will provide a position fix relative
to the known satellite position. The position fix established by each of these
schemes has a sensitivity to measurement errors that is characteristic of the
geometry of the particular angles measured. The method of establishing a posi-
tion fix and its sensitivity to measurement errors for both of the angle tracking
schemes will be examined below. The first scheme is described in this section;

the second scheme will be described in Section 6-8.

Measuring the angle between the local vertical and the LOS from the LRV to
the satellite establishes a circular locus of position on the lunar surface. Two
angle-measurements at two different times during the same satellite pass provides
two different circular locus of position (Fig. 6-12). These two circles have two
intersections. The estimated LRV position is at the intersection selected by

dead reckoning data.

Sensitivity Analysis

The relation between changes in the LRV position and changes in the angles
measured for this scheme is also developed in Appendix E, Section E-3, and

repeated below

3 r R

1 1 . -
A i - = A
4 Eg'cotql 51n31 - o ry
) R 1 R 1
A o i - = i no (— i - =) A
q, cos (P; cotq,, 51n82 r) sin (Pé cotq, 31n32 - ro
\ 2 J
or
2 \
P
Ar L o Aq
% 5 1
Pl
R1 cotq, 31n8l -
b 2 2
P1 cota P2 .
br_ P2 P,? )
L Ry cosq, sinB, - —— sina(R, cotq, sinB,- —))
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The meaning of the variables are illustrated in Fig. 6-13.

Position Fix Computation

The equations of position fix are derived in Appendix F, Section F-3, and

repeated below:

-1 cos¢1 - sinLl sinL -1 cos¢2 - sinL2 sinL
cosLl cosL ) + cos ( cosL2 cosL

)

cos¢l - 31nL1 sinL

cosL1 cosL

X=X + cos = (

1 )

The meaning of the variables are shown in Fig. 6-12.

These two equations can be solved for A and L, the LRV's lunar longitude and

latitude.

6-8. Navigation Satellite Scheme IV - Angles Between Satellite LOS and a Stellar

Direction

The position fixing Scheme that measures the angles batwasn
tion and the LOS from the LRV to two different positions of a satellite is the
scheme that is geometrically similar to the celestial fix that uses an earth
landmark and two stellar directions. The navigation satellite replaces the earth
landmark. The relatively short distance between the LRV and the satellite causes

the desirable increase in sensitivity of measured angle to the LRV position.

The angle measured between a stellar direction and the direction to a
satellite establishes in space a conical locus of position. A second, similar
locus of position for the LRV can be established by measuring the angle between
the same stellar direction and the direction to the satellite at a later time
during the same pass. The computed LRV position . is at one of the mutual inter-
sections of these two cones and the lunar sphere. The proper intersection is

selected by a priori information. The scheme is shown in Fig. 6-14.
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Sensitivity Analysis

The relation between changes in the LRV position and changes in the angles
measured is developed in Appendix E, Section E-4, and repeated below. The

meaning of the variables is illustrated in Fig. 6-15.

( ) ( cosElcosqlsinal 3 ( 3
A e S A
9 P sing (siny+cosElcosq1cosul) P sing r,
1 1 1 1
1 cosEzcosqzcosa2
A ——(si A
4y P.sing (31nY+cosE2cosq2cosa2) P sing r
) 2 2 2 2 ;o J
or
Arl
A - 1
¥ "~ si (cosE,cosq,sino,—cosE_cosq.sina.)
mJo siny 2€084,81n%, 16089, 81n%
. . _ . . i A 1
P131nqlcosElcosq231na2 P2s1nq2cosE1cosq151nal [ ql ’
l |
—P151nq1(31nY+cosE2cosqzcosa2) P251nq2(51nY+cosElcosq131nal) kqu J

Position Fix Computation

The equations for position fix are derived in Appendix F, Section F-4, and

repeated below.

x' sinA_ + y' sinL_ cosA_ + z' cosL_ cosi
s 8 s s s

td
[]

-x' cosA_ + y' sinL_ sinA_ 4 z' cosL_sin)
s s s s s

<
]

z =-y' cosLS + z' sinLS

where x', y', and z' are solved from the following equations .
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v : - 2
{x (r + Rl) cosLl sin (AS Al)}

v _ : _ - 2
+ {y (r + Rl)[cosL1 s1nLS cos (XS Al) sinL cosLs]}

1

- v _ . . 2 2
= {z (r + Rl)[cosL1 cosLS cos (XS Al) + 51nLl 31nLS]} tan®q

v _ . - 2
{x (r + R2) cosL, sin (As Az)}

v : _ _ . 2
+ {y (r + R2)[cosL2 sinl_ cos (AS Al) sinL cosLS]}

2

= v _ . . 2 2
{z (r + R2)[cosL2 cosLS cos (AS Az) + sinL, s1an]} tan?q,

% 2 2 2
x' +y'"+z'=7r

Here x, y, and z are the same lunar coordinates that were defined in Section 6-3,

x', y', and z' are so defined that the z'-axis is directed along the stellar
direction; the x'-axis is perpendicular to z' and in the xy plane; the y'-axis
is perpendicular to both x' and y' in accordance with the right-hand rule. The

meaning of the variables is shown in Fig. 6-16.
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CHAPTER 7

NAVIGATION TECHNIQUES BASED ON LANDMARK SIGHTINGS

7-1. Navigation Using Landmarks

Although navigation using landmarks is an old art, most of the known tech-
niques are not suitable for LRV navigation due to many considerations such as
reliability, weight of hardware, required time for each fix, accuracy, and con-

venience. New techniques are therefore needed to supplement the old techniques.

Several new techniques of landmark navigation are presented in this chapter.
All techniques involve only angle measurements. The use of angle measurements
only is very attractive since the required equipment is generally much lighter
and simpler than ranging equipment. Because of the simplicity of the equipment,
the schemes can be used to guide astronauts to walk back to LEM in case the LRV

is disabled.

Two types of landmark navigation are presented here.” The first type makes
use of landmarks with known position and the second type includes schemes using
landmarks whose positions are not known. Most techniques reported in this chap-

ter are believed to be original.

7-2. Landmarks with Known Position

Two assumptions are made for this .section: 1) The position of each land-
mark is known with respect to a given lunar coordinate system, and 2) Only an
angle measurement device is used. The first assumption amounts to having a map
of .landmarks. The computation .required for navigation can either be performed
by time sharing the on-board computer or handled by an earth-based computer via

telemetry.

In the following sections, the measurement geometry and analytics are
first presented, then the error sources and approaches to improve the naviga-
tion accuracy are discussed. Two rules concerning the selection of landmarks
based on results of the sensitivity analysis are given. Techniques of using
redundant measurements to improve the position determination are also presented

and compared.

125



126

Known Azimuth Reference

If there is no noise of any kind involved in the measurement, two land-
marks are needed to obtain a fix when .the azimuth reference is known and three

are needed when the azimuth reference is not known.

Referring to Fig. 7-1, let (xl, yi) and (x2, yz) be the known positions of
two landmarks, and (x, y) be unknown position of the LRV. Since the azimuth
reference is known, the angles 61 and 92, which are measured from the azimuth

reference to the lines of sight from the LRV to two landmarks, can be measured.

Two equations representing the lines of sight are

= tan 6, = m
- x 1 1
1
(7-1)
g = tan 62 = m,
2
Rearranging the equations and using matrix notation, (8-1) becomes
[ m 1 ] [ % ] [ by ]
= (7-2)
-m, 1 y b2
where
= - i = 7-
bi Yy T mX o H=1, 2) (7-3)
Thus the LRV position is given by
-1
X -my 1 bl
- (7-4)
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Unknown Azimuth Reference

Using similar notation the geometry of the position fix using three land-

1> By
83 are measured from an arbitrarily chosen reference direction and o is the

marks but no azimuth reference is depicted in Fig. 7-2. The angles, B and
angle between this reference direction- and the unknown azimuth reference. The

equations of three lines of sight are

y =¥ .
X - %, = tan (a + Bi)’ i=1, 2, 3 (7-5)

These three equations can be solved for three unknowns x, y, and a.

An alternate way of using three landmarks is to measure any two angles
between the lines of sight as .shown in Fig. 7-3. Since landmark positions
are known, each angle measurement determines an equation of circle passing
through two landmarks and the LRV position. Another angle measurement pro-
duces an equation of a second circle. One of the intersections of these two

circles is the LRV position which can be solved from these two equations.

Error Consideration

In practice perfect measurements can hardly be obtained due to unavoid-

able errors. The possible error sources are:

1. Human sighting errors

2. Landmark position errors
3. Instrument errors
4

. Computation errors

The effects of the first three error sources can be reduced by the proper
choice of landmarks and by the use of redundant landmarks. The computation
errors are caused by rounding .off numerical numbers in the computer computa-

tion. In the following development we shall ignore computation errors.

Sensitivity Analysis

To have a feel of how various errors affects the accuracy of the position

fix let us first solve (7-1) explicitly.
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I b B v IS TR
T
(7-6)
g - 12 (e = %) +mpy,y - myyy
T

Taking partial derivatives of (7-6) with respect to Mo, X, and i for i =1,

2 gives the following twelve sensitivity functions.

- 2 —
ay M2 U1t Yy mmy (% - %)) \
m 2
1 (ml - 1n2)
- - m2 -
oy M Oty - (xy -oxp)
dm, ;
2 (m2 - ml)
> 7-7)
ox__ 91 T Yy mmy (- x))
dm, 2
1 (ml - m2)
ox Gy vy mmy (xp - xp)
om, - 2 J
2 (m2 ml)
dy ™ )

m. m

3x=m



m2m1

2 1 (7-8)

9x 1

9% - 1
9y, b )

bx _ ™
axl ml - m2
x ™
X, m, - m /
2 2 1
Notice that when m, = m_, all activities become infinite. This is the

1 2
singular case when two lines of sight coincide. Thus it is desirable to select
landmarks such that m, - my be as large as possible. Thinking along this way
we have the following rule

Rule 1: Select the landmarks such that the sighting
lines intersecting at the LRV divide the 360°
horizontal field of view, as nearly as possible,

into equal parts.

The following figure shows the ideal angle separation for cases of two and
three lines. Equation (7-7) also reveals that to make the sensitivities small
with respect to the slope measurements it is desirable to keep x, - x

1 2
Y, small. Constrained by Rule 1, this means that the closer the two landmarks

and vy -

are to the LRV position the better. Generalizing this idea we have a second

rule.
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Rule 2: If n landmarks are used, then among all
the landmarks satisfying Rule 1, choose

those n nearest to the LRV position.

Redundant Measurements

Aside from reducing errors at error sources, the effect of errors can be
< reduced by making redundant measurements and then applying certain statistical
data reduction techniques to arrive at an optimum position fix. Four data

reduction concepts will be discussed. They are:

1. Arithmetic mean,

2. Least square distance regression,

3. Least square solution error regressicn,
4

. Sequential estimation (Kalman filtering).
The first three methods do not make use of statistical properties of errors.
Each of them is as good as the others when error statistivs is aot koown.
When the statistics of errors are given, the last method would give better

results. All methods will be applied to an example.

Consider how n equations resulted from n landmark sightings.

—m1 1 D 1
-m2 1 b2
X ]
. . - . (7-9)
-m 1 b
\ n J L\ 0

where n > 2 and bi =¥y T M. In vector form we have

Az=b (7-10)
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where

X
_Z- 3
y
( —m1 1 )
—m2 1
A = .
-m 1
\ n )
r 3
bl
b2
b =
b
()

All under-barred lower case letters denote vectors and capital letters denote
. . . . . n! . .

matrices. The set of n equations will in general give =2y 121 inconsistent

solutions. One of the four data reduction concepts can be used to give an

improved unique solution.

Arithmetic Mean

Solving two of the n equations in (7-9) at a time we have
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z.,. = = A b., , i,j=1,2,---n (7-11)
y i<

where Aij is a 2 x 2 matrix formed by the ith and the jth rows of A, and Eij is
a 2-vector formed by the ith and the jth elements of b. The arithmatic mean of

z.. is therefore,
=%

X
- —2)121
z = ) = _ﬁﬂ_g%;g__ z Eij (7-12)
y ) ij
i<j

Least Square Distance Regression

In this regression technique, the position z is selected to minimize the
sum of the squares of distance from the selected position to each of the set of

different solution given by (7-11). That is we want to minimize

)T (Z- A b)) (7-13)

I, = J(Z-a 5 by

1]
i<j

Loy
ij —ij

Taking the derivation of (7-13) with respect to z and setting the result to

zero gives

2z =__(_ri?!_2!_ z AT. b.. (7-14)
= n! R B B

1]

i<j

which is simply the arithmetic mean, the same as (7-12).

Least Square Solution Error Regression

Write (7-10) as

Az -b=o. (7-15)
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No simple z can be found to satisfy this equation. Instead, any selected z

will result in a solution error

The criterion is to choose a z such that

I,=ce=(az-b" (az - b) (7-16)

is minimized. Taking the gradient of (7-16) with respect to z and setting

the result to zero gives
T
VI =A" (Az -Db) = o (7-17)
Solving for z, yields

2= (a8 A

|o

(7-18)

Kalman Estimation

If the statistics of the measurement uncertainities are known, a sequential
estimation based on the Kalman filtering principle can he emnloyved to vield the

LRV position.

The format of the discrete Kalman filter is first reviewed. The set of

equations describing the sequential operation of the Kalman filter is given by

~

X =x g vt Iy -H x 1 k=1,2,-— (7-19)

1 -1

HE R (7-20)

K = [Pply + B R EIT

T T -1
Petr T B T B By Ry Y B Bl By B 022D

where X is the estimate of the desired vector X Yy is a vector representing

the observed quantities and is related to X through the measurement equation.

Y = Hox to (7-22)
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The vector n, represents observation noise whose covariance matrix is Rk' Hk

is a matrix relating the desired quantities to the observed quantities. Pk is
the covariance matrix of the estimation error, e =¥ - ﬁk. The quantities

30 and Po needed for starting the sequential computation are obtained from the
statistics of X, Now we shall formulate the landmark navigation problem into

the Kalman filter format.

The observed quantity in our problem is the angle ei and the desired are

LRV coordinates x and y. They are related by the nonlinear relationship

1y YT Yy
6, = tan —mmm— (1-23)
1 X_Xi

It is assumed that the observation error is not severe so the linearization of
(7-23) about the initially estimated LRV position is acceptable for describing
the perturbation relationships among variables. Differentiating (7-23) gives

the perturbation equation

y - yi X - xi
de. = - 7 dx + Vi dy (7_24)
1 r r,
i i
where ri = ./ (x—xi)2 + (y-yi)z. Thus the measurement equation corresponding
. 77 NN\ .
LU \/r—csy 4AS
y -y X - X hx
A8, = = = +n, (7-25)
1 2 2 1
r, T,
i i Ay
H.
i

where the noise n,, representing the error in angle measurement, has a known

variance of R and a mean of zero.

The initial estimate Qo of the LRV position can be obtained by making

two initial angle measurements 60 and then solving the equation.

and 6
o

1 2

y -3y
O ol _ tan © (7-26a)
& -x ol

o 02



(7-26b)

where (xol, yol) and (xoz, yoz) are the positions of two landmarks. Therefore,

g o 2% %1 T TG %op Yo < Vo1
0 taneOl - tane02
(7-27
. tane01 tane02 (xo1 - XoZ) + tane01 Yoo = tane02 Vo1
Yo tan® . - tanb
ol 02

To obtain Po’ we first differentiate (7-27) with respect to angles 90

)
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1
and 902.
6 26 AB 6 26 A8
~ [(xzo—xo)tan 02 + yol_on]Sec ol ol t [(xol—XOZ)tan ol+y2—y1]sec 02 o2
Axo = (tanb -~ tanb )2
ol 02
(7-28)
2 2
[(xoz—xol)tan6°2+yol—y02]taq602 sec601A601+[(xol—xoz)taneol+(y02—yol)tanelseceoer02
- 2
(taneOl taneoz)
In vector form,
Ax
° A6
ol
. = A A8 (7-29)
Ay 02
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where
[( )tans Jsece [( )tan® Jsess
x02_xol tan 02+y01-y02 sec ol xol_x02 tan 01+Y°2—Y01 sec 02
- 2 _ 2
(taneol taneoz) (taneOl taneoz)
A=
6 (3] 26 0 0 26
[(XOZ_xol)tan 02+y01—y02]tan oZSec ol [(xol“xoZ)tan 01+y02—y01]tan olSec o
- 2 _ ) 2
i (tan6ol tanaoz) (tane01 tan 02)
Then compute Po from
Ax
o
P = [0 4§ 1 = AQal (7-31)
o A o o
Yo
Aeol
where Q is the covariance matrix of A6 which is assumed known.
02

The computation procedure for the Kalman estimation can now be listed as

follows:

1. From the two initial angle measurements 90 and 60 calculate the

1 2
initial estimate of LRV position (ﬁo, §O) using (7-27), and obtain the initial

error covariance matrix PO using (7-28).

2. To each redundant angle measurement ek corresponding to landmark

No. k, compute

140
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3. Compute the h-th correction from

Aik A;‘:k—l Aik_l
= + [Kk A6, - Hk]

by AYp-1 BYy-1

4. Compute the h-th corrected LRV position from

~ A

- [l AA ’AA = N
A.k KO ha uxk { Xo o)

~

Ve =Y, Ly (8y 0)

(o]

5. If a (k+l)-th angle measurement is made repeat step 2 to 5 for

the (k+1)-th corrected LRV position.

7-3. Landmarks Whose Positions are not Known

The lunar coordinates of the LRV  cannot be determined by observing land-
marks whose positions are not indicated on the available lunar maps. However,
it is possible to use these observations to locate the LRV on an unscaled map
of the lunar surface. This technique can be used to guide the LRV to return to
any or all of the previously visited sights, including the original starting

point at: the LEM.
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When a reference direction is .available, two landmarks within visible range
are enough to guide the LRV. When a reference direction is not available, three
landmarks are needed. These two cases will be presented separately in the

following discussion.

Use of a Reference Direction

When a reference direction is available, two landmarks are sufficient to
guide the LRV to a previously visited site. Consider the situation shown in
Fig. 7-5. Here the navigator is given a reference direction and two landmarks
whose positions are not known. The reference direction might be defined by the
solar direction, a stellar direction, or the direction to a landmark on earth.
The following equations will enable .the navigator to return from his present

position to his initial position using only angle measurements.

Various solutions to this problem can be devised. The special advantage
of the scheme described here is that it provides the steering direction which
enables the LRV to move from its present position to the initial position in a
straight line. This feature allows the navigator to return quickly and to con-

serve energy.

Let the initial angles .of the landmark direction measured from the reference

direction be o and Bo, while the present angles are o and Bl as shown in Fig. 7-5,

In order to determine the return .direction the navigator must move the LRV
a short distance in any direction away .from the present position as shown in Fig.

7-6. He must measure the angles @ and ¢ before the movement, and measure the

angles 6' and ¢' after the movement. Then the proper steering angle, a,, can be
determined from equations (7-32) and (7-33). The angle al is defined in Fig. 7-7.
sin¢' sin(8' - 8) sin (Bl - B)
K = o (7-32)

sin®' sin(¢' - ¢) sin (al - ao)

1 Ksina_ - sinB
- o 0

= -33
Yl tan Kcosoc0 + cosBo (7-33)

The derivation of these equations is in Appendix G,
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Notice that in (7-33), to each given arctangent two values of Y, can be found.

This ambiguity will be resolved in the continued study.

Reference Direction Not Available

When a reference direction is not available three landmarks are required to

guide the LRV back to its initial position.

problem and defines all angles.

The direction of the shortest return path is

given by the angle Yl' Notice the reference of each angle measurement and the

direction of positive angle.

- The present problem is: given the measured angles o and Bo between lines

joining the initial LRV position and landmarks, and also angles o

1

and Bl at the

Fig. 7-8 depicts the geometry of the

present LRV position, how can the angle Y, for the shortest return path be deter-

mined.

The angle Yy is given by

where

The ratios k, amd k

Y, = tan

2

k2 sin A sin B - k3

sin o

1

sin C

k2 sinB (cos A - k3 cos C) + k3 sin C(k2 cos B - cos al)

(7-35)

(7-36)

(7-34)

3 can be determined by the technique similar to the determina-

T
tion of (;2) in Appendix G. If the LRV is moved a short distance in any direction

1
at the starting end as shown in Fig. 7-9, then
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R sin 6,' sin (8,' - 6.)
2 2 1
k2 "R, " sin 6. sin (6,' - 61) (7-37)
1 1 2 2
' v o
R3 sin 63 sin (el 61)

k, = — = — T (7-38)
3 R1 sin 61 sin (63 63)

All above equations are derived in Appendix G.

As in the case of last section, the value of Y1 given by (7-34) is not unique.

This ambiguity will be resolved in the continued study.

7.4. An Example

Consider the case where landmark positions are known. The true position of
the LRV is at x = y = o. Ten angle measurements are made to ten different land-
marks whose positions are known. The landmark positions and the corresponding

angle measurements are shown below.

Landmark Position Measured angle

X (KM) Y (KM) (degree)
2 i 26.7047
4 -2 ~-26.5795
=2 8 103.8340
-5 -2 202.0022
6 8 53.1393
2 5 68.2511
-6 6 135.0673
5 -6 -50.3190
-6 -10 239.1266
-5 1 168.6730

It is known a priori that the measured values of the angles are contaminated
with noise having a mean of zero and a variance of 0.01. The techniques dis-
cussed above are used to obtain the estimates and the results are listed in
Table 7-1 and plotted in Fig. 7-10. Fortran programs used to compute these esti-

mates are included in Appendix H.



Arithmetic mean:

x = 0.0021546 KM

Least Square Solution Error Regression

x = 0.015 KM

Kalman estimation

0.

+0

+0

+0.

0.

0070807 KM
.0044727
.0064793
.0058166
.0015173
.0016975
.0068746
0032268

0018305

Result of the Example

Table 7-1

y = 0.00531784 KM

y = 0.001 KM

0.,0024522

-0.0063779
-0.0036411
-0.0035441
-0.0025585
-0.0011890
+0.0009305
0.0002596

-0.0006101
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CHAPTER 8

DLRV NAVIGATION SYSTEMS AND THEIR COMPARISON

8-1. General

The organization of the total DLRV navigation system is dictated by the
DLRV mission requirements. To have continuous navigation, which is needed for
vehicle guidance, a dead reckoning navigator must be part of the total system.
However, for a long mission period the errors that accumulate with time when a
dead reckoning navigator is used would be prohibitively large. Some type of
. position fix scheme must be employed to periodically update the position esti-

mate provided by the dead reckoning system.

In this chapter comparison will be made .among dead reckoning navigators and
among position fix schemes. A base line total system will be proposed as a

standard for comparison.
8-2. Dead Reckoning Navigators

Two kinds of measurements are involved in.a dead reckoning navigator,
namely the orientaticn and the distance measurements. Vvarious combinations of
these two kinds of measurement devices give many different dead reckoning navi-

gators.

Orientation Measurement Devices

Table 8-1 presents a list of seven candidate orientation measurement
devices for DLRV. Advantages and disadvantages of each device are discussed

in the "Remark" column.

All devices, except the gimbaled platform, are attractive for DLRV appli-
cation in certain respects. The gimbaled platform is simply too heavy and too
bulky. Although the pure odometer device is .not precise enough to be part of
the main navigator, it is very attractive as a back-up, especially for comple-

menting the sun-sensor when the latter is shadowed.
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Srlent:;:o: Vertical Azimuth
easuF n Measurement| Measurement Remarks
Device
Adv: - Does not require solar line of sight
1. Vertical |Directional - Can be ma?e insensitive to lateral
Gyro-Gyro Gyro Gyro acceleration
y Disadv: - Heavier than systems 2, 3, and 4
- Drift in directional gyro
Adv: - Light weight
2 - Does not require solar line of sight
i Directional | Disadv: - Drift in directional gyro
Pendulum~ Pendulum* il e
Gvro Gyro - Sensitivity to lateral acceleration
Y can be minimized but not completely
eliminated
Adv: - Light weight
3. . - Reliable and drift free azimuth sensor
Vertical . A
Gyro-Sun- Gvro Sun-Sensor - Can be made insensitive to lateral
Sensor y acceleration
Disadv: - Vulnerable to shadowing
Adv: - Very light weight
4 - Both sensors are drift free
Pendulum Pendulum* | Sun-Sensor Disadv: - Vulnerable to shadowing

Sun-Sensor

- Sensitivity to lateral acceleration
can be minimized but not completely

eliminated
> No.dlrect vertical and Adv: - Lighter than gimbaled platform
Strapdown azimuth measurements. . .
- Good precision
Platform Angular rates are mea—|_. . R . .
. Disadv: - High computation requirements
Unit sured.
6. Adv: - Good precision
Gl b d 3 . 3 . -
imbale Platform is stabilized Disadv: - Too heavy and too bulky for DLRV
Platform by gyro outputs. \ f
. application
Unit
Adv: - Extreme simplicity, no extra sensor
needed
7. Differential - An éttréctlve back-up for temporary
Pure None of Odometer navigation
Odometer Disadv: - Not precise because of no vertical
: Outputs
Device reference
- Wheel slip causes permanent heading
error

*This includes the use of accelerometers as a pendulum.

Orientation Measurement Devices

Table 8-1
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Distance Measurement Devices

Two most attractive distance measurement devices for DLRV application are

the odometer and the accelerometer. The comparison of the two is given in
Table 8-2.

Dead Reckoning Navigators

Table 8-3 lists the fourteen dead reckoning navigators that are generated
by combining the seven orientation measurement techniques of Table 8-1 with
the two distance measurement techniques of 8-2. It is noted in Table 8-3 that
some of these combinations are attractive for the DLRV mission while others are

unreasonable combinations.

8-3 Position Fix Navigators

Position fix schemes have been studied that are based on sightings of three
different kinds of references: natural celestial bodies, lunar satellites, and
lunar landmarks. Table 8-4 lists some of the basic advantages and disadvantages

of these three position fixing concepts.

8-4 Base-Line Navigation Package

Here a base-line navigation package, including both dead reckoning and
position fix systems, will be selected.as a standard for comparison for any
candidate schemes for DLRV navigation. In order to provide a good base line for
comparison, this package has been conservatively selected as an approach that
will meet the essential navigation requirements and not require any extraordinary
support devices. It should be emphasized that the selected base line system is

not necessarily the best system.

The dead reckoning portion of the base line package is number T1 in table
8-3. This dead reckoning navigator uses a directional gyro and a vertical gyro

to determine the LRV orientation and an odometer to measure distance.

Those dead reckoning combinations that use a solar directional reference
were discarded because the base-line system should be operative even when sha-

dowed. In order to qualify a dead reckoning package that uses a solar sensor for



Devices Remarks

Advantages:
- No extra sensor needed since an odometer

is already built into each wheel assembly

I.
Odometer - Not affected by gravitational acceleration

Disadvantages:

~ Wheel slips cause measurement error

Advantages:

- Not affected by wheel slips

Disadvantages:
IT. Accelerometer - Gravitational acceleration must be sub-

tracted using measured orientation

- More sensitive to bias due to double

integration

155

Distance Measurement Devices

Table 8-2
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Distance II Accelerometer
Orien- I Odometer and
tation Integrators

L I 111
Gyro-Gyro (Base-line System)

2
Pendulum- 12 I12
Gyro

3 I3 I13
Gyro-Sun- - Need back-up when - Need back-up when
Sensor shadowed shadowed

4 14 114
Pendulum- - Need back-up when - Need back-up when
Sun~Sensor shadowed shadowed

- Lightest system

5 15 115
Strapdown - More computation - More computation
Platform required required
6 16 I16
Gimbaled - Too heavy and too - Accelerometers are
Platform bulky mounted on the
platform to eliminate
resolving accelero-
meter signals
7 17 117
Odometers - Using same odometers - Back-up for System

~ Back-up for System
I3 or 14

II3 or I4.

Comments for Dead Reckoning Navigators

Table 8-3
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Navigator

Remarks

Use of
Celestial
Bodies

Advantage:
- Stars are already available

Disadvantage:
- Very sensitive to measurement error

Use of
Lunar
Satellites

Advantages:

- Less sensitive to measurement error
as compared to celestial navigation

- May take the advantage of the lunar
scientific satellite if there will
be one.

Disadvantages:

- Very expensive if need to provide a
lunar satellite just for LRV navi-
gation

- Need to know accurately the orbital
elements of lunar satellites

Use of
Landmarks

Advantages:

- Least sensitive to measurement error
due to the short distance between
landmarks and LKV

- Very reliable when landmarks are
available

- Simple hardware

Disadvantage:
- Landmarks may not be available

Position Fix Na

Table 8-4

vigators
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the DLRV, it will be necessary to demonstrate that this temporary loss of direc-
tional reference can meet the mission requirements as well as the base line sys-—

tem.

Similarly, systems that use pendulous vertical sensors were discarded. In
order to qualify a dead reckoning package that uses a pendulum it will be necessary
to demonstrate that the pendulum swinging does not seriously degrade the naviga-

tion accuracy.

Odometers are selected to measure distance because they appear to be the

simplest and most reliable way to do the job.

The position fix portion of the base-line system must be based on the con-
cept of sighting natural celestial bodies. The base-line system cannot depend
on satellites or landmarks. It cannot depend on satellites because it is uncertain
whether it will be possible to proyide.thisvtype of artificial reference. The
base-line position fix scheme cannot depend on lunar landmarks because it is
uncertain whether the lunar terrain will be .so hospitable as to provide naviga-

tor with a dependable supply of distinguishable landmarks.



1
| 159
1

CHAPTER 9

SUMMARY AND RECOMMENDATIONS

This chapter contains a brief summary of this report and recommendations

for further research activities.

9-1. Summary

The requirements of continuous and high precision navigation for the DLRV
dictates that both dead reckoning and position fix navigators be employed. A
detail study of various navigation components, dead reckoning navigators, posi-
tion fix navigators, and navigation systems was made. Many technical problems
were discovered and solutions to them were suggested. Several most important

results contained in this report are summarized here.

Two sets of dead reckoning navigation equations are given. The second set
is an approximation of the first, and is very satisfactory when the excursion

range between updates is small.

In principle, a pure odometer navigator can be constructed to measure both
and the disiance traveled by the DLKV on a smooth level
surface. The system is not suitable as a primary dead reckoning navigator because
of its high vulnerability to wheel slip. Extending its range of application
beyond the level surface is not recommended. However, the pure odometer naviga-
tor is very attractive as a temporary back-up, especially for complementing the

solar sensing device to eliminate the shadowing difficulty.

Because of their simplicity and light weight odometers seem to be the best
for distance measurement. But, the conventional way of processing odometer sig-

nals has serious pitfalls. Techniques for correct mechanization were developed.

Analysis shows that a properly damped pendulous inclinometer can satisfacto-
rily provide a vertical reference. An inclinometer is much lighter and consumes

less power than a vertical gyro.

Five different arrangements for using solar sensors as a heading indicator

were proposed, and the required computations were also developed.
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Two celestial position fix schemes and four lunar satellite position fix
schemes were investigated. Their sensitivity analyses and computation equations
were developed. Better position determination can be achieved using a lunar
satellite at the expense of system.complexity and the installation of a satellite.
On the other hand, celestial navigation, though less accurate, is much more econo-

mical.

Several new techniques of using lunar landmarks for position fixing were
developed. All techniques require only angle measurements. The techniques
are very attractive for two reasons. First, the distance between landmarks and
the LRV are much shorter than those between stars or satellite and the LRV.
Therefore, the error sensitivity due to equipment imperfections is much smaller.
Secondly, in general, the angle measuring device is much simpler than a ranging
device. Therefore, for the determination of the LRV position on a lunar map,
position fix using landmarks is probably the best. Furthermore, when many land-
marks are available, redundant measurements can easily be made to improve the

navigation accuracy.

Comparisons were made among various sensors, navigators, and navigation sys-
tems. A base-line, total navigation system was proposed and is intended only as
a comparison standard. The system consists of a celestial navigator for position
fixing and a dead reckoning navigator for continuous navigation. The dead rec-
koning navigator includes a vertical gyro and a directional gyro for orientation

measurement and odometers for distance measurement.

Since aerospace industries are constantly working to improve various navi-
gation equipment and since the slow-down of Apollo Application Program will allow
more time for hardware improvement, this study did not try to single out a parti-

cular navigation system as the best for the DLRV application.

9-2. Recommendations for Further Research

Besides yielding many new results the research reported here also generated
many new concepts which deserve further investigation. A thorough study of these
concepts will prepare a foundation for an economical development of a better DLRV
navigation system. Continued research activity in this direction is strongly recom-

mended. Four most important problems are described briefly in this section.
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From the viewpoint of performance reliability, crew safety, and simplicity

of the equipment, the DLRV navigation should take the advantage of lunar land-

marks whenever they are available.

Continuing research is needed to further study

and refine the new concepts advanced in this report. Details to be investigated

include:

1. The removal of the heading angle ambiguities

associated with navigation schemes using

unknown landmarks.

2. A sensitivity analysis for each proposed land-

mark navigation scheme.

3. The development of an efficient policy for

discarding old landmarks and picking up new

landmarks as the DLRV moves along.

4. A study of the feasibility of using the pro-

posed schemes as primary position fix naviga-

tors and as back-up navigators.

5. Investigation of the hardware required for each

scheme.

6. A critical comparison of the landmark navigation

approach to other navigation approaches for the

DLRV application.

Optimum Combination of Dead Reckoning and Position Fix Data

In this report, dead reckoning and position fixing systems have been dis-

cussed separately. The position fix system has been treated as something that

will be used periodically to .update the continuous dead reckoning system. No

attention has been directed to the details of this updating procedure.

The most straightforward updating procedure would be to reset the dead

reckoning navigator to the location indicated by the position fix scheme whenever

a position fix is obtained. This approach to the problem implies the assumption

that the position fix information is perfect and that the dead reckoning infor-

mation is useless. Fortunately, this is not the true situation. When the dead

reckoning system has been operating.for a long period of time since its last

updating, its position estimate will become imprecise because of biases in the

sensors. Nevertheless, this dead reckoning estimate still contains some
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information about the vehicle location and this information should not be wasted.

A better way to combine these two types of navigation data would be to
recognize that neither the dead reckoning nor the position fix data is perfect
and to treat them accordingly. The satistical properties of the dead reckoning
and position fix navigation errors can be estimated by considering the type and
the quality of the sensors that are used. Once the statistical properties of
the navigation errors for the dead reckoning and position fixing schemes are
estimated, a procedure can be devised to combine the dead reckoning and position
fix data in a manner that will minimize the probable navigation error. The Kalman
filtering formulation can be used to produce an optimal way to cimbine the two
sets of data. 1In reference 26 this problem is studied as it applies to naviga-

tion of ships at sea.
The following is a list of problems which need to be studied:

1. Development of techniques for optimum instrumentation
by first performing the analytical study keeping in
mind the practical constraints imposed by the naviga-
tion hardware.

2. Study the additional instrumentation and data pro-
cessing required.

3. Evaluating the performance of the developed techniques
by performing a simulation study using practical hard-
ware data.

4. Comparing the merits of all developed techniques.

It should be pointed out that the results obtained from this study can
easily be incorporated into any chosen navigation system consisting of dead
reckoning and position fix navigators, since the major effort of the optimum

instrumentation is in data processing and instrument adjustment.

DLRV's Total Navigation, Guidance, and Control System

Since navigation, guidance, and control are intimately related, a study
should be made to consider the best combination of the three subsystems into an

integrated, total system. Among the items needed to be studied are:

1. Compatibility
2. Mobility
3. Maneuvability and ease

of operation
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4. Overall reliability
5. Total power consumption

6. Others

Satellite Navigation

Although a DLRV navigation using lunar satellite is an expensive one, its
prospect indeed warrants further research and development of the concept.
Experience with Navy's TRANSIT system indicates that satellite navigation approach
may be important in achieving the kind of position determination accuracy
desired by scientists. The preliminary investigation has shown that given the
orbital elements of the satellites, satellite navigation is more accurate than
the known celestial navigation. It is very possible that scientists will need
lunar satellites for scientific objectives. Under this condition it would be

very convenient for NASA to share these satellites for navigation purposes.
The points that need to be studied in satellite navigation include:

1. The concepts

2. The required operation efforts such as tracking,
ranging, angle measuring, etc.

3. The required data processing effort and how to
do it.

4. 'lhe required on-board and earth-based equipment.
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APPENDIX A

COMPUTATION OF NAVIGATION ERROR FOR PURE ODOMETER SYSTEM USED ON A TILTED PLANE

The pure odometer navigation system described in Section 4-1 will accurately
compute the LRV coordinates along the axes of the tilted surface. Errors occur
because the navigation system output is interpreted as being the LRV coordinates
along the level axes. The following equations give the x and y coordinates of
the LRV as functions of a, B, and the x' and y' coordinates.

x' cos a

'\/1 - sin® a sin? B

)
. , sin o sin B |

i
_\/& - sin? o sin? B J

The navigation error that is caused by using this pure odometer navigation system

on a tilted surface is the difference between the LRV coordinates in the tilted

plane and the coordinates in the level plane. Therefore,

_ 1l - cos o

_\/i - sin? o sin? B

x' sin o sin B
=y' - jy' - cos B

“V/l - sin? o sin? B8
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APPENDIX B

DERIVATIONS OF EXPRESSIONS FOR GIMBAL ANGLES FOR TWO-DEGREE-OF-FREEDOM GYROS

The coordinates of the fixed S2 coordinate system are related to the

coordinates of the vehicle referenced S1 coordinate system by the following

equation,

where the elements of [A] are

aj, = cos 0
aj, = sin ©
8,5 = - sin
ayy = sin ©
a,, = cos 0
a,3 = CO8 ¢
ag; = sin ©
az, = - cos
ay3 = cos )

)

cos V¥

Y cos 6

sin ¥ - cos ¢ sin

cos ¢

sin 6 sin ¥ + sin

cos ¥ sin ¢ + sin

8 sin ¢

cos ¥ - sin ¢ sin

cos

cos

cos

sin

(3-1)

Fig. 5-11 in the text shows that the sides of the inner gimbal angles are

the sides between one coordinate of the Sl system and a second coordinate in the

S2 system. Consequently the cosines of the inner gimbal angles are simply the

element from the matrix A that is the direction cosine between those two coordi-

nates. This means that the cosine of the inner gimbal angle is a . where

167
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m is 1, 2, or 3 depending on whether the side of the angle

1» Jps o1 kl'

n is 1, 2, or 3 depending on whether the side of the angle

that is a S1 coordinate is i

~

or k,.

that is a S2 coordinate is i2, j2, 9

The cosines of the outer gimbal angles are more complex and the derivation
of these expressions is also more complex. Fig. 5-11 shows that one of the sides
of the outer gimbal angle is a coordinate of the Sl coordinate system and that
the other side is a direction defined by the vector cross product of one coordi-

nate in the S1 system and one coordinate in the S2 system.

As an example the procedure for determining the cosine of the outer gimbal
angle will be demonstrated for arrangement 1. The cosines of the outer gimbal

angles for the other systems are obtained in the same way.

In arrangement 1 the outer gimbal angle is between i, and the direction

1
defined by k. x iz. From Equation B-1

1

~ ~ ~

12 = cos B cos ¥ il + (sin ¢ sin ¥ - cos ¢ sin 6 cos ¥) jl

~

+(sin 6 cos ¥ sin ¢ + sin ¥ cos ¢) kl

~

It follows that k, x i2 = (cos ¢ sin 6 cos ¥ - sin ¢ sin ¥) i

1 1

~

+ cos 6 cos V¥ jl

~

The cosine of the outer angle between il and (kl X iz) is

i

cos (0OA) = Lo (kl X 12)

(kl X iz)

Therefore,

. e oY
cos (OA) = cos$ sinb cos ¥ sin¢ sin )

(cos¢ sind cos¥ - sind sin ¥)2 + (cos Y cos 9)2



169

APPENDIX C

DERIVATION OF SENSITIVITY EQUATIONS FOR CELESTIAL POSITION FIXES

C-1. Sensitivity Equations for Position Fix Using an Earth Landmark and Two
Stellar Directions
An i, m, n coordinate system is defined with n along the LRV's local verti-
cal, m perpendicular to n and on the great circle determined by the LRV position

and GPE’ and 1 completing the right-hand triplet.

From the geometry of Figure 6-2 it is possible to write

P cos ql =P - él
- ®-D - s,
Differentiating this equation gives
cosqy AP - P sinq1 Aql = - él - Ar (c-1)
From the law of cosines
P2 = RZ + r2 - 2rR cosB

Differentiating this equation produces

2P AP = 2rR sinB AB
Then

AP = B% sinB AR (c-2
For small changes in B

AB=-A—?——'—’:‘— (c-3)

r

Combining (C-1), (C-2), and (C-3) gives

R . — - . = A o -
~p €0sq; sinB Ar * m + P sing, Aql = Ar * s (c-4)



A~ ~ A

‘él can be resolved along 1, m, and n as follows

‘ ~ A ~

= sinyl cos) L+ sinYl sinul m + cosy, n (Cc-5)

‘ Substituting (C-5) into (C-4) gives

R .
— ing AT * m + P sing, Aq, =
P cosq; sinB Ar *m+ P sing, Aq,
- . . £ . . " _
Ar (51nY1 cosa1 + 51nY1 31na1 m) (C-6)
(C-6) can be solved for Aql
Aq, = ———#L—— [siny, cosa i + (siny, sino, - R cosq
1~ Psing, 1 1 1 1~ 7P 1
sinB) m + cosYl n] * Ar
= ———l;—-[siny cosa, Ar, + (siny, sina, - R cos q. sinB)Ar ] c-7)
Psinql 1 1 L 1 1 P 1 m
Similarly
A = —— i A
2 7 Psing, [siny, cosa, dr,
+ (siny., sino, - —E;-cosq sinB)Ar ] (c-8)
2 2 P 2 m
(C-7) and (C-8) can be expressed in matrix form
) rsinY cosQ ) ( )
Aq 1 1 1 R
—— —_— I . - _— 3 A
1 B sinql Psinql (51nY131nu1 5 cosq sinB) r,
Aq fifzg—fgiig ——l———-(sinY sina - R cosq., sinB) Ar
L 2 \ P sinq2 Psinq2 2 2 P 2 L m
4 4 7/

The inverse relation is

Ar
. 1

sinYl sinY2 sin(ot2 - al) +4§'sin8 (cosql siny2 coso, - cosq, sinYl cosal)

Ar
m
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. . R . . . . .
P sinql (31ny1 sina, - 3 cosq, sing) -P sing, (51nyl sina, —-% cosqy sinB)

-P sinql siny2 cosa, P sinq2 sinyl coso,

Aql

qu

C-2. Sensitivity Equations for Position Fix Using Two Stellar Directions and

the Local Vertical

~ ~ A

A l, m, n coordinate system is defined as shown in Fig. 6-6. n is the LRV's

A A ~ -~

local vertical. 1 is in the n 8y plane and is perpendicular to n. m completes

the right-hand triplet.

~

9, is the angle between sy and . Therefere,

1
=
.

r cos q; = 1
bifferentiating this equation gives
- r sing; 8q; = Ar - s (c-9)
For small changes of 9
1 - -
- == Ay e
Aql i r°m
s, can be resolved along 1 and n as follows.
s, = sinq; ? + cosqy n (C-10)

Substituting (C-9) into (C-10) produces

A~

Aq1 = - ;EEEEI (s1nq1 L+ cosq, n) * Ar



A

But Ar is perpendicular to n so

Aql = - %-Ar

Similarly
rcos q, =r * s,

~

Differentiating both sides and resolving S5 gives
Aq, = - l-(cosa Ar, + sino Ar )
2 r 2 m

(C-11) and (C-12) can be written in matrix form.

1
Aql -3 o Ar2
1 sina
qu - T cosa - = [ Arm
Consequently
Arl -r o Aq1
Arm r cot a - r csca qu

(C-11)

(C-12)
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APPENDIX D

DERIVATION OF POSITION FIX EQUATIONS FOR CELESTIAL POSITION FIX SCHEMES

D-1. Position Fix Equations Using Earth Landmark and Two Stellar Directions

An x', y', 2z' coordinate system is defined in Fig. 6-3. The z'-axis points

toward star number 1.

x' =x sinkl -y cosA

1
. A si in). si - -
y x costy 51nLl +y sin}, 51nL1 z cosL1 (D-1)
z' = x cosll cosL, + y sin?. cosL, + z sinL

1 1 1 1

The equation of the cone with the center line directed along the z'-axis, the

vertex at the center of the moon, and the cone angle 94 is

x'? +y'2 =2 tanqu (D~2)
Substituting (D-1) into (D-2) gives the equation of the cone in xyz-coordinate

system:

[x sin»\l -y cos/\l]2 + [x cos\, sinL, + y sini, sinL, - z cosLl]2

1 1 1 1

= ), inA ] 2 z
[x cosAy cosLl + y sin 1 cosLl + z s1nLl] tan q;

Then the equation of the cone with its vertex at the landmark on earth is

_ . _ _ 2 _ , _ . .
[(x XE)51nkl (y yE)coskl] + [(x xE)cosA 31nLl + (v yE)s1nX sinL

1 1 1

- — 2 _ _ _ : ; . 2 2
(z ZE)COSL1] [(x xE)cos)\1 cosL1 + (y yE)51n>\1 cosLl + z 51nLl] tan q,

(D-3)

Similarly the equation of the cone with center line directed along the stellar

direction #2, with cone angle d9» and with vertex at the landmark on earth is
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_ . . _ 2 _ . _ . .
[(x XE)51nA2 (y yE)coskz] + [(x xE)cosX2 51nL2 + (y yE)31n>\2 81nL2

A - 2= _ A - . . 2 2
(z zE)cost] [(x xE)cos 1 cos L2 + (y yE)51n>\2 cosL2 + z 51nL2] tan“q,

(D-4)
After simple manipulation (D-3) and (D-4) become

_ 209 _ 2 2 2 _ 2¢1 o 2 .2 2
(x xE) (1 - cos Ll cos Al sec ql) + (y yE) (1 - cos L1 sin Xl sec ql)

_ 201 _ w12 2 _ _ . _ 2 2
+ (z zE) (1 sin“L, sec ql) + (x xE) (y yE) 31n2kl (2 cos“L. sec ql)

1 1

- _ _ . . 2 _ _ _ . 2 -
(y yE)(z zE)31n2Ll sinA_ sec q; (z zE)(x xE)51n2L cos>\l secq 0

1 1

(D-5)

_ 201 _ 2 2 2 _ 201 _ 2 . 2 2
(x xE) (1 cos L2 cos Kz sec qz) + (y yE) (1 cos‘L, sin Az sec q2)

2
+ (z - zE)2(1 - cosZL2 seczqz) + (x - xE)(y - yE) sin2A2(2—c052X2 seczqz)
-(y - yE)(z - zE)sinZL2 sin>\2 seczq2 - (z - zE)(x - xE)sinZL2 cosk2 seczq2 =0
(D-6)
The equation of the moon's surface is

--2 : __2 + 22 = 1_? (D—?)

The LRV coordinates, x, y, and z can be determined by simultaneous solution of

(D-5), (D-6), and (D-7). Note that the coordinates of the landmark on earth are

»
"

A
R cos E cosLE

~<i
oo}
1]

inA
R cosLE sin E

ZE =R 51nLE

where R is the distance from moon center to the earth landmark.

The LRV lunar latitude, L, and its lunar longitude, A, can be determined

from the following equations.



A= s:'Ln_1 L——JL——%

D-2. Position Fix Equations Using Two Stellar Directions and Local Vertical

With the geometry of Fig. 6-5 the spherical trigonometry law of cosines

gives the following relations.

cosq; = cos (90° - Ll)cos(90° -~ L) + sin(90° - Ll)sin(90° - L) cos(A - Al)
= 81nL1 sinl + cosLl cosL cos (A - Al)
cosq, = cos (90° - Lz)cos(90° - L) + sin(90° - L,)sin(90° - L)cos(A, - A)

= sinL2 sinL + cosL2 cosL cos (A, = A)

These equations can be solved to produce

cosq., — sinL. sinL
-1 1

A- Al = cos ~ ( cosL, cosL ) (D-8)
-1 cosq, - sian sinL
A, - A = -
2 cos ( cosL2 cosL ) (D-9)
Combining (D-8) and (D-9) gives
N Cos_l (cosql - 51nLl 31nL) . COS_: (cosqz - 31nL2 51nL)
2 1 cosL1 cosL cosL2 cosL
(D-10)
or
cosq, - sinL. sinL cosq, - sinL, sinL
cos(A, = A)) = ( 1 1 ) ( 2 2 ) -
2 1 cosL, cosL cosL, cosL

1 2

1 sinL)zA/cong colL - (cosq, - sinL, sinL)2 (D-10)

7
cosLl cosL2 cos‘“L

2 2 .
h/ cosLl coS§L - (cosq1 - sinL )
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(D-10) and (D-11) are transcendental equations in L. Either of these two equations
can be solved to determine L. Then either (D-8) or (D-9) can be used to determine

A and thus complete the determination of the LRV lunar coordinates.



APPENDIX E

DERIVATION OF SENSITIVITY EQUATIONS FOR SATELLITE POSITION FIX SCHEMES

E~1. Sensitivity Equations for Position Fix Using LRV to

~ A ~

A l, m, n coordinate system is shown in Fig. 6- 7

tical; l is in the r R plane and is perpendicular to n,

hand triplet.

n
m

Satellite Range

is the LRV's local ver-

completes the right-

Using the geometry of Fig. 6-7, the law of cosines gives

2 _ 2 2 _
a3 R1 + r 2rR1 cosBl

Differentiating this gives
2q1 Aq1 = ZrRl 51n81 ABl
or

rR1 51n81 ABl

1 93
In Fig. 6-6

R, sinB, = q, cos E

1 1

Substituting (E-2) into (E-1) gives
Aql = r cos El ABl

For small changes of Bl

Dv
La 3
.

>

Substituting (E-4) into (E-3) produces

cos E. % * AT

Aq 1

1

cos El Arz

Similarly

2 _ p2 2 _
a5 RE+r 2rR c0382

2

(E-1)

(E-2)

(E-3)

(E-4)

(E-5)
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Mifferentiating this equation

2q, 4q, = 2rR2 sinB, AB

or

\ . rR2 81n62 a8
9 = a, 2

From Fig. 6-6
R2 51n62 = q, cos E2
! Putting (E-7) into (E-6) gives

qu =1 cos E, ABZ

But

~ ~

22 = 2 cos o + m sina

‘ Now

>

w
L]
I

’ Combining (E~9) and (E-8) gives
qu = cos E2 [coso & + sino

= cos E

2 cosa Ar2 + cos

{E-5) and (E-10) can be written in matrix form

l’ A
l ql cos El o
} -
A
k 1, ) cos E2 cosa cos E2
Conversely
Arl sec E1 o
Ar -coto sec E sec E

2

[cos o & + sina m]+ Ar

m]* Ar

i A
E, sina r

Arz
sina Ax
m
A
9
csco qu
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(E-6)

(E-7)

(E-8)

(E-9)

(E-10)
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As the sighting azimuthal separation approaches 90° ‘and the sighting elevations
g P

approach zero; then the above equation goes to simply

Arz 1 o] Aql

Arm o 1 qu

E-2. Sensitivity Equations for Position Fix Using LRV to Satellite Range Rate

This scheme uses a doppler radar to measure the range rate between the LRV
and an overhead satellite. It is assumed that the satellite trajectory is known
as a function of time. 'The instant of closest approach ¢f the satellite to the
LRV is indicated when the doppler beat goes to zero. This fixes the LRV position
in a plane that is normal to the satellite trajectory and contains the position

oi the satellite at the instant of closest approach.

An imperfection, a bias, in the doppler radar will cause the wrong instant
of time to be identified as the instant of closest approach. Consequently, the
planar locus of the LRV position will be erroneously shifted along the satellite

trajectory.

The following equations will give the size of the error as a function of the

size of the radar bias. From Fig. 6-10 it can be seen that

VX _ VX

R [——‘_—““—'
~ Rg + x?

If the doppler bias is Aﬁ, then the measured range rate, ﬁ', will be
— Y 4+ AR

/ R2 + x2
~ "o

The instant of closest approach is indicated when R' is zero. The actual value

R' =R + AR =

of x at the indicated instant of closest approach is the size of the erroneous
shift of the planar locus of position. Thus the size of this error can be

determined by setting the previous equation to zero. Then



180

AR2
X[pr o o = + Ro —_— (E-11)
° v2 - AR?
If v >> Aﬁ then
) ~ AR
XIgt = 0 T F Ry T

x is negative before the instant of closest approach and positive after the

instant of closest approach.

In addition to establishing a planar locus of position by measuring the
instant when the doppler beat goes to zero, this scheme also establishes a circu-
lar locus in this plane. The circle is centered about the satellite position at
the indicated instant of closest approach. The radius of the circle, R'O, is
computed as a function of the second derivative of range measured at the indi-

cated instant of closest approach.

2
R' = — _._.V (E—lz)
o R' .
R' = o

However, the bias in the range rate measurement will not change the measured

second derivative of range. So

o e
RUgr =6 = RIR' =0

The second derivative of the range can be computed for this constant veloecity

satellite from Pig. 6-10.
R = R? + x2
o
2RR = 2xv
RR + R? = v2

2 _j2
R

R = —~

Now (E-12) becomes
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. 1
>R2 ARZ 2
v RI v? Ré + =
R' = R' =0 _ vZ - AR?
© v2 - R? R' = o v2 - AR?
2
v [Rov]

(v2 - aR2)3/2

Finally, the error in the computed radius of the circle is eR'

E-3. Sensitivity Equations for Position Fix Using the Angle Between the
Direction to the Satellite and the Local Vertical

~ A A ~

Fig. 6-13 shows an 1, m, n coordinate system. n is the LRV's local vertical.

~

l is in the n Ei plane and is perpendicular to n. m completes the right-handed

triplet.

In Fig. 6-13

P1 r cos q; = Pl *r

Differentiating gives

r cos ql APl - rP1 sin 9, Aql =P, *Ar+ T °* Efl (E-13)

1
Also
Rl =r + P1
Since Ei will not be changed when the LRV moves,
0O = Ar + APl
or
AP, = - Ar

1



For small changes in r, Ar is normal to r so that
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T * Afi = -1 ¢« Ar = 0 (E~-14)
Substituting (E-14) into (E-13) gives
r cos q, APl - rPl sin q; Aql = P1 + Ar
or
r cos q, APl - Pl * Ar
Aql B rP. sin (E-15)
1 9
From law of cosine of plane trigonometry,
2 _ o2 2 _
Pl = R1 +r 2Rl r cosBl
Differentiating gives
A = i A -
2p, AP, = 2R, r sin B, 4B, (E-16)
or
. Rl r SlnBl AR
Pl =
1
For small changes in T -
pp, = Lr - 2 (E-17)
1 r
§i can be resolved along % and n.
5 . E _
Pl Pl (sin 4y + cos q; n) (E-18)
Substituting (E-17) into (E-16) gives
R, sinB. AT * &
pap, = —2 1 (E-19)
1 P
1
Substituting (E-18) and (E-19) into (E-15) gives
r cos q; Rl sin Bl Ar + & A N _
Pl - Pl (sin 4 2 + cos q, n). Ar
Aq, = -
1 rPl sin q

R

51

1 . 1 - ~ 1 —
G—E cot q, sin Bl -3 ) Ar L - = cot 4 Ar * n

~
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Ry 1., - -
= (F? cot q; sin Bl ol ) Ar 2

R

1 1
= i - = A -
(fi'COt q, sin Bl - ) Ar, (E-20)
where
Ar * n =o0
Ar c 2 = Arﬂ,
Similarly
R2 1 _ ~
A = i - — A e 2
q, (Fg cot q, 31n52 - ) Ar 9
but
12 =2 cos @ + m sin O
so that
Ry 1 (E-21)
qu = (ﬁg cot q, sin 32 - ;-) (cosa Ay + sino Arm)
(E-20) and (E-21) can be written in matrix form.
[ ] R 1 1 ( )
A — i - = A
qy P% cot q, sin Bl - o Ty
Ry 1 ) 1
s . _ 4 N . o= A
qu cos.dPZ cot q, sin 32 r) 51q¢(§7 cot q, sin 82 r) r
\ ) \ 2 2 )\ )
The inverse relation is
( ) ( p2 1 [ )
Ar L o Aq
L P% 1
Rl cot q; sin Bl -
- ya i
X Pl cot a P2 A
"m P? P2 12
L ) L R, cos q, sin 81 - 51na(R2 cot q, 51n82— _;0, L J
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E-4. Sensitivity Equations for Position Fix Using Angles Between Directions

to a Satellite and a Stellar Direction

First it is necessary to name some of the angles in Fig. 6-15,

~

q; is the angle between s and Fi.

9, is the angle between s and Fé.

y is the angle between s and 2.

In Fig, 6-15
Pl cos q; = P1 s (E-22)
But
Pl = R1 - T
Combing (E-22) and (E-23) gives
P. cos q; = R, -T) * s

1

1
Differentiating gives
cos q, AP, - P, sin q, Ag, = - ; - Ar
or T ) -
- - cos q APl + ; + AT (52
1 Pl sin 4
because Aﬁi = o for any displacement of LRV,
In Fig. 6-15
Pi = r? + Ri - 2rRl cos Bl
Differentiating produces
2Pl --AP1 = 2rRl sin Bl ABl
or
o rR1 sin Bl 28 (B-25)
1 P 1

1



From Fig. 6-15(b) we see
Rl sin Bl

Substituting (E-26) into (E-25) giv

APl =
| For small changes in Bl
ABl
But
kl = cos
So
1 p—
A = = Ar
81 r
and
A =
| Py
= cos El (cos
= cos El cos al
Also, ~
s = sin

s * Ar = (sin

Substituting (E-27) and (E-28) into

cos q; cos El (cos

=a, =P
es

r cos E1 ABl

~

(cos o 2 + sin oy m)

r cos E1 ABl
al E + sin al ;)° Ar
Arl + cos E1 sin &y Arm (E-27)
Y E + cos y ;

Y i + cos ¥y ;)' At
sin y Ar, (E-28)

(E-24) gives

o Ar2 + sin o

i A
1 Arm) + sin ¥y r,

1

Aql =
-1 [( s E, cos o
P. sin q cos q; cos &y cos oy
1 1
Similarly
A -1 [( cos E_ cos
12 P, sing, - o° % 2

Pl sin q,

sin o

+ sin y) Arz + cos q, cos El 1

o, + sin y)Arz + cos q, cos E2 sin a,

A
rm]

185

(E-29)

Arm](E—30)



(

\

(E~29) and (E-30) can be written in matrix form.

Aql

qu

L P251nq2

P151nql

The inverse relation is

P sinql cosE

1 cosq, sina

2 2

-P sinql(sinY+cosE2cosq2cosa

1 2

(siny + cosE1 cosq, cosal)

(siny + cosE2 cosq, cosaz)

cosEl cosql 51na1 3
P131nql

cosE2 cosq, sina
P231nq2

2

-P sinqzcosE

2 cosq,sina

1 1

P251nq2(51nY+cosE cosqlcosa

1

Ar

Ar

sin y(cos E2 cos g, sin o

2

- cos E1 cos q; sin al)

186
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APPENDIX F

‘ DERIVATION OF EQUATIONS FOR POSITION FIX USING SATELLITE POSITION FIX SCHEMES

F-1. Position Fix Equations Using Satellite Range

The geometry for this position fix scheme is shown in Fig. 6-8. The law of

cosines provides the following two expressions for cos Bl and cos 62.

r2+(r+Rl)2—qf
cos Bl - 2r (r + Rl)
2 2 _ 2
) r<+ (r + R2) ;)
cos 82 =

2r (r + R2)

‘ The next equations come from the law of cosines of spherical trigonometry

| cos g, = cos (90 - L) cos (90 - Ll) + sin (90 - L) sin (90 - Ll) cos (A - Al)
= gin L sin Ll + cos L cos Ll cos (A - Al)
cos 62 = cos (90 - L) cos (90 - L2) + sin (90 - L) sin (90 - L2) cos (Az - A)

= gin L sin L2 + cos L cos L2 cos (Az - 2)

This pair of equations can be manipulated to produce (F-1) and (F-2)

r - . . 3
N cos'l cos Bl sin Ll sin L (F-1)
1 cos Ll cos L

7/

(cos B, - sin L, sin L)

A - A, = cos 2 2 (F-2)
2 cos L2 cos L J

\

Adding (F-1) and (F-2) gives

cos Bl - sin L sin L cos Bz - sin L sin L

AZ - Al = cos cos L cos Ll + cos cos L cos L2

2
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or

cos Bl - sin L sin Ll cos 82 - sin L sin L2

l) cos L cos Ll cos L cos L2

cos (Az - A

2 2 2. .
[cosL coéLl-(cosBl—sinL sinL2)2][cosL cosL—(cosBz—sinL sinL2)2]

2
cosL cosL cosL

Equation (F-3) or (F-4) can be solved for L. Then this value of L can be used in

(F-1) or (F-2) to determine ).

F-2. Position Fix Equations Using Satellite Range Rate

Let the satellite velocity vector at the indicated instant of closest approach
have an angle a with respect to the x axis and have an angle b with respect to the
Xy plane. Define a new x'y'z' coordinate system as shown in Fig. 6-11. The y' axis

is parallel to the satellite velocity at the indicated instant of closest approach.

X =xsina -y cos a
y' =X cos acos b+ysinacosb -z sinb (F-5)
z' = x cos asinb +y sinasinb + z cos b

X =x"sina+y' cosacosb+ z' sin a cos b

y = -x' cos a+ y' sin a cos b + z' sin a sin b (F-6)
z=-y'sinb + z' cos b
where xyz are lunar coordinates. The coordinates of the satellite in xyz-coordinate
system:

xg = R cos L cos As’ Vg =R cos L_ sin A, 2z =R sin Lg (F-7)

Here R is the distance from the center of the moon to the satellite.

Combining (F-7) and (F-5) gives the coordinates of the satellite in the

x'y'z' system.
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x'==Rcos L cos (W + a)
s s s

v . . e .
Ve R [cos LS cos b sin ( S + a) sin LS sin b}

' . . \ .
zd R [cos LS sin b sin ( s + a) + sin LS cos b]

The LRV is located somewhere on a circle in a plane parallel to the x'z' plane. This
circle is centered about the position of the satellite at the indicated instant of
closest approach. The circle's radius, Ro’ is computed from the measured derivative

of range rate. The equations for this circle are

' 1y 2 1T _ ,1y2 _ p2
(x xs) + (z zs) Ro

1

y =3

1
S

or

{x' + RcosLs cos(ks +a)}2+{z'-R[cosLS sinb sin(AS+a)+sian cosb]}? = Rg (F-8)

y' =R [cos LS cos b sin (AS + a) - sin LS sin b]

The equation for the lunar surface is

x'2 + yv2 + 2'2 = 2

Simultaneous solution of (F-8), (F-9), and (F-10) gives the LRV coordinates
in the x'y'z' system. Then (F-6) can be used to determine the coordinates in the
xyz system. Finally the next equations can be used to compute the LRV's lunar

latitude and longitude.

r cos L cos A

"
1]

r cos L sin X

<
I

z =1 sinL

F-3. Position Fix Equations Using the Angles Between the LRV to Satellite
Line of Sight and the Local Vertical

The geometry for this scheme is shown in Fig. 6-12. The angles 9 and 4
will be assumed to be less than 90° since the satellite can be observed only

when it is above the horizon.
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r + R

r - 1 - 1
sin (q1 - ¢1) sin (180°- q;)  sin Qg
r ) r + R2 r + R2
sin (q2 - ¢2) sin (180" - qz) sin q,
P r .
¢l =q, - sin (r T Rl sin ql)
S P - ,
¢2 =q, sin (;—I—i— sin q2)

2

From the law of cosine of the Spherical Trigonometry:

cos ¢l = cos (90°- Ll) cos (90°- L) + sin (90°- Ll) sin (90°- L) cos (A - Al)
= sin Ll sin L + cos Ll cos L cos (1 - Al)
cos ¢2 = cos (900- L2 cos (90° - L) + sin (90°- L2) sin (90°~ L) cos (Az - )
= sin L2 sin L + cos L2 cos L cos ( AZ - )
°F _, cos ¢l - sin Ll sin L
A - Al - cos ( cos Ll cos L ) (F-11)
_, cos ¢2 - sin L2 sin L
- A = _
A2 cos cos L2 cos L ) (F-12)
Combining (F-11) and (F-12) gives
-, cos ¢1 - sin Ll sin L 4 cos ¢2 - sin L2 sin L
A, = AL = Y —
2 1 - ¢°s8 ( cos Ll cos L ) + cos ( cos L, cos L ) (F-13)
or
cos ¢, — sin L, sin L cos ¢, - sin L, sin L
cos (A, = X)) = (——n L ) (——2 2 ) -
2 1 cos L1 cos L cos L2 cos L
(F-14)

2 2 2 2
_ s . 2 _ i , 2
,J/ cosLl cosL (cos¢l 51nLl sinL) ;JCOSLZ cosL (cos¢2 31nL2 sinlL)

2
cosL1 cosL2 cosL



191

(F-13) or (F-14) can be solved for L. Then (F-11) or (F-12) can be used to

determine A,

F-4. Position Fix Equations Using the Ancles Between the LPV to Satellite

Line of Sight and/or a Stellar Direction

The geometry for this scheme is shown in Fig. 6-16. The coordinates of S1

and Sz, the positions of the satellite at two different times, can be written
from Fig. 6-16.

Coordinates of Sl: X, = (r + Rl) cos Ll cos Al

¥y = (r + Rl) cos L1 sin Al

N
1]

(r + Rl) sin L

Coordinates of S,:

9 X, (r + R2) cos L2 cos 12

Yy (r + R2) cos L, sin A

2

z, = (r + RZ) sin L

2 2

Fig. 6-16 also shows an x'y'z' coordinate system. The z' axis is along the

stellar direction.

x'" = xsin A -y cos A
s s
y'=xcos A_sinl_ +ysin A sinl_ -z cos L (F-15)
s s s s s
z' =xcos A_cosL +ysin A cosL + z sinl
s s s s s

x=x"sin A_+y'"sinlL cos A+ z' cos L_ cosh
s s s s s

y=-x'"cos A\_+y'sinL_ sin A_+4 z' cos L_ sinA_ (F-16)
s s s s s

z=-y'cosL + z'sinlL
s s

The coordinates of S, and S, in the x'y'z'

1 2
of Sl:

system are as follows. Coordinates

x!' = (r + Rl) cos L, sin (AS - )

1 1




T . - .
vy = (r + Rl)[cos Ll sin LS cos (AS Al) + sin L1 cos LS]
zy = (r + Rl)[cos Ll cos LS cos (AS - Al) + sin Ll sin LS]

Coordinates of Sz:
| . 1 -
Xy = (r + R2) cos L2 sin (AS Az)

| - 1 - - ai
Y, = (r + Rz)[cos L2 sin LS cos (As Az) sin L2 cos LS]

v - _ . .
z5 (r + Rz)[cos L2 cos Ls cos (AS Az) + sin L2 sin LS]

The following equations describe two cones with vertices at Sl and 82 and

axes aleng the stellar directions., The LRV is at the mutual intersection of

these cones and the lunar surface.
v o132 LN v L1y 2 2
(x xl) + (y yl) (z zl) tan q;

v L1y 2 R R v 132 2
(x x2) + (v y2) (z 22) tan 45

oy
v . - 2 1 . _ —e \ 2

{x (r+Rl)cosLl 51n(lS Al)} + {y (r+Rl)[cosL1 s1nLS cos(AS Al) 51nLl cosLS]}

-{z" [{&+R,)cush, cusl_ cos{d -A.) + sial, sianl 1}2tan?g (r 17

1 1 s s 1 1 s 11

| . - 2 ' . _ e 2

{x (r+R2)cosL2 51n(>\S Az)} + {y (r+R2)[cosL2 s1nLS cos(As Al) 51nL2 cosLS]}

= . - . . 2 2 Fe g\

{z [(r+R2)cosL2 cosLS cos(As Az) + 51nL2 51nLS]} tan‘q, (F-13;

The next equation describes the lunar surface.
x'2 4+ y'2 4212 = g2 . (F-19).

““rmltaneous solution of (F-17), (F-18), and (F-19) gives the LRV coordin .tes in
the x'y'z' system. Then (F-15) will give the coordinates in the xyz svstem.
Finally the following equations can be used to compute the L™"'s lunar latitude

and longitude.
X =1r cos L cos A
y =1 cos L sin A

r sin L

N
[l



APPENDIX G

DERIVATION OF EQUATIONS FOR NAVIGATION
USING UNKNOWN LANDMARKS

G-1. Navigation Using Two Unknown Landmarks

Referring to Fig.

and AQOQlL2 gives

7-8 and applying the law of sines to triangles AQ0Q1L1

r
X 1
sin (¢, - @) sin (o + 0)
X I,
sin (B, - B ) sin (B_ - 0) °
Taking the ratio of these two equations gives
sin (Bl - Bo) i r, sin (BO - 0)
sin (al - ao) r, sin (ao + 0)
Substituting ¢ = 180 - Yl into this equation,
sin (Bl - BO) r, sin (30 + Yl) (1)
sin (al - ao) r, sin (ao - Yl)

Eq. (G-1) can be solved for Yl which is the direction of the shortest return

-1 K sin ao - sin Bo
1° tan Kcos & + cos B (6-2)
o o
where
r, sin (81 - BO)
K= r, sin (o, - a ) (6-3)
1 1 o)

path.

The navigator must move the LRV a short distance in any direction away from

the present position as shown in Fig. 7-7.

AQlQ'Ll and AQ of Fig. 7-7 gives

1
19 Ly

Using the law of sines in triangles




sin (8' - 6) sin (180 - 8")
D T

sin (¢' - ¢) _ sin (180 - ¢")
D B r2

- sin ¢'

)

Dividing the first equation by the second,

sin (6' -8 "2  sin @'
sin (¢' - ¢) r, sin ¢’ )
Therefore,
r . ] . '
2 _ _sin ¢' sin (8' - 6) (G-4)
r, sin 8' sin (¢' - ¢) )
Similarly
r i . . 1
2 _ _sin ¢ sin (8' - 6) (G-5)
rl' sin 6 sin (9" - ¢)

Combining (G-3) and (G-4) gives

sin ¢' sin (6' - 8) sin (Bl - BO)

K= sin 8" sin (¢' - ¢) sin (al - ao) : (G-6)

Eq. (G-6) was

Ksin a - sin B8
1 (0] (o]

Y1 % tan Kcos o + cos B
o o

These are the two equations needed for navigation using two unknown landmarks.

G-2. Navigation Using Three Unknown Landmarks

Referring to Fig. 7-9 and applying the law of sine to triangles AQOQlLl,

194



AQle,Lz, and AQOQ1L3 gives
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X 1
- - (G-7)
sin Dl sin Yl
x } KRy ©-8)
sin 02 sin (Yl - “l)
X KIRl (G-9)
sin 03 sin (v, - Gl - Bl)
But,
Ol = Yl - Yo - 180
02 = 180 - ao + Yo - Yl + al
Py =180 —a =B 4y -¥ +o+ B
so (G-7), (G-8), and (G-9) become
R
X 1
- = - (G-10)
sin (Yl Yo) sin Yl
K.R
271
X = (G-11)
sin (Y1 - Yo - al - ao) sin (Yl - al)
K.R
X = 31 . (G-12)
sin (v) =Y, -8B -8B, -9 -0a)  sin (y; -0 - B)

Dividing (G-10) first by (G-11) and then by

1
cos (al - ao) - K;-(cosdl - cotY1
cos (al - ao + 81 - BO) - K;-[cos
= cot

(G-12), and rearranging terms, yields

cosal) = cot (yl - Yo) sin (dl - So) (G-13)
(al + Bl) - cot Y, sin (dl + Bl)]
(v; -v,)) sin (¢ —a +8, - 8) (G-14)
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By dividing (G~13) by (G-14) the factor cos (yl - yo) is eliminated and the
result can be solved for Yq» the angle for straight line return.

) K2 sin A sin B - K3 sin al sin C

K2 sin B(cos A -~ K3 cos C) + K3 sin C (K2 cosB - cos al)

Y, = tan (G-15)

where

1
c o2
2 Rl
_ 3
KS_R
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APPENDIX H

FORTRAN PROGRAMS FOR SECTION 7-4

(AN EXAMPLE)

1. ARITHMATIC MEAN

DIMENSION ALF(10),AX{10) AY(10) 4X{20),Y{10),TAN(10)
PRINT 103
103 FORMAT{1H1,9X,10HINPUT DATA///)
D0.201 1=1,10
READ 202, X(I),Y(!},ALF(I)
202 FORMAT{2F6.1,F9.4)
ALF(I}Y=ALF(I)}/57.3
B=ALF{(1)
TAN{I)=SIN(B)/COS(8)
201 PRINT 204, X{T),Y{IY,ALF{I),TAN{I)
204 FORMATI(4X,2F 7.1 494X4F15.8,4X,F15,8/)
PRINT 2720
220 FORMAT(1H1,9X,AHOUTPUT///)
TX=0.0
TY=0.0
M=0
N=1
205 M=M+}
N=N+1
IF{M.FQ,10) GO TO 206
00 207 1=N,10
DE=TAN{M)-TAN(I)
TR=Y(I)}-X{I)*TAN(I)
TS=Y{M)=-X{M)XTAN(M)
AX{TY=({TR-TS) /DE
AY{I)=(TR:2TAN{M)-TSXTAN{I))/DE
TX=TX+AX{1)
TY=TY+AY{(1])
207 PRINT 209,X{I),Y{I)AX{I),AY(])
209 FORMAT{4X,2F7.14+4X4E15.844X,F15,8/7)
GD TO 205
206 AMX=TX/45.0
AMY=TY /45,0
PRINT 208,AMX,AMY
208 FNORMAT(10X,F15.8,4X%X4E15.8)
CALL EXIT
END
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2. LEAST SQUARE SOLUTIDN ERROR REGRESSION

22

DIMENSION A{10,2),R{2,2),C(2,10)
DIMENSION T(2,10),8{(10,1),421(2,1)
DIMFNSION X(10),Y(10),ALPH(10),AE(2,2),A1(2,2)
DO 4 I=1,10

READ 3,X{I),Y{I},ALPH(I)
FORMAT{2F6.1,F9.4)

A{l,1)=1.0
A{1,2)=—TAN(ALPH(I)*3,142/180.0)
BEI,1)=Y(I)=-X{T}*TAN(ALPH{I)*3,142/180.0)
PRINT 6, X{I) Y{T),ALPHIT) ,A{I,1),A{1,2)+B{I,1),1=1,10
FORMAT (1HO,6E16.,9)

DO 20 1=1,2

DO 20 J=1,10

Cll,J)1=A0J,1)

nn 21 I=1,2

DO 21 J=1,2

R{1,J)=0.0

np 21 K=1,10

Rilgdi=R{igdi*+Ciion)ira1Rya7

Do 22 1=1,2

no 22 J=1,2

AE{I,J)=R(1,J)
D=AFE{1,1)*AE(2,2)-AE(1,2)%AE(2,41)
AT{1l,1)=AE(2,2)/D

AI(1,2)=—AE(1,2)/D

-AT§{2,1)=-AE(2,1})/D

AI12,2)=AE{1,1})/D

DG 23 1-142

Do 23 J=1,10

T{I,J)=0.0

DO 23 K=1,2
T{I,J)=TUT, ) +AT{ I ,,K)*C(K,yJ)

I=1
nD 24 J4=1,2
Z(J,I)=0.0

N0 24 K=1,10
ZUIHyI)=Z20Js 1) +TUILKIXBIK,HI)
PRINT 5,{72(1,1),1=1,2)
FORMAT{1HO,5X,F8.3)

CALL EXIT

END
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3. KALMAN ESTIMATION

68

33
123

DIMENSION P(242)4P1{242) 4HTL{2,41) yHTRI(2,1)
DIMENSION H{142)+AMI(2,2),HTR{2,41),4DCPXY(2,1)
DIMENSION CKD(241)4HP{142) HPHT(1,451),PHT(2,1)
DIMENSION DEAF{141),DLFHD{141)4R{1,1),RI(1,1)
DIMENSION HTRIH{2,42) ,AM{242)3CK{2,1),HD(1,1)
DIMENSION PBR{2,1)4PBHP(242)BM{1,1},8MI(1,1)
DIMENSION L{2),M(2),PA{2,2),AE(2,2)

READ 1,X14Y1,X2,Y24ALFI ALFIT
FORMAT(4F6.1,2F9,.4)

ALF1=ALF1/57.3

ALF2=ALFI1/57.3

TANI=SIN(ALF1)/COS{ALF])
TAN2=SIN(ALF2)/COS{ALF?2)

PRINY 68, TAN1,TAN2
FORMAT{1H1,3X4FE15,.8,4X,F15.8/)

NDEN=TAN1-TAN?2

TR1I=Y2-X2%TAN?

TR2=Y1-X1*TAN1

LCPXZ=1TR1I-TRZIFUEN
CPY2={TR1%TAN1-TR?*TANZ2) /DEN

PRINT 2,CLPX2,CPY?

FORMATI{4X,E15.844X4E15.8/7)
A={{X2-X1)®TAN2-(Y2-Y1))/{DENRCOS{ALF1))#%%x2
B=({Y2-Y1)-{X2=X1)*TANL) /{DEN®COS{ALF2) ) %%2
AP={{ X2-X1}*TAN2~-{Y2-Y1) ) *TAN2/({DENXCDOS{ALF1) ) %%
BP={{Y2-Y1)-{X2-X1)*TANL) *TANL/{DEN®COS{ALF2) }%%*2
P{141)=0,01*%({A%%2+B%%2)
P11921-0. 01 *{ A*AP+B%DP)

P{2,1)=Pl1,2)

Pl2+2)=0.01%( AP%%k2+BP%%2)

PA{l,1)=P(1,1)

PA{1,2)=P(1,2)

PA(2,1)=P{2,1)

PA{2,2)=P(2,2)
D1=PA{1,1)%PA(2,2)-PA{1,2)%PA(2,1)
IF(D1.EQ.0.0) GO TO 45

PI(1,1)V=PA(2,2) /D1

PI{1,2)=—PA(1,2)/D1

PI(2,1)=-PA({2,1)/D1

PI(2,2)=PAl1,1) /D1

DO 33 J=1,2

PRINT 123,P1{Jy1),4PI{J,2)

FORMAT{4X,2F15,.8)

DN 11 I=1,2

PRINT 3,P(1,1),P(1I,2)

FORMAT{4X,2F15,8)

R{1,1)=0.01

RI{1,1)=1,0/R{1,1)



22

58

81

82

64

66

83

84

85

DCPXY(1,1)=0.0

DCPXY(2,1)=0,0

READ 44 X9 YyALFME,K

FORMAT{2F6.14F9.4,11)

IF(K.EQ.9) GO TO 99

ALFM=ALFME/57.3

AY=Y-CPY2

AX=X-CP X2

ALFC=ATANZ2{AY,,AX)

PRINT 22,AX,AY,ALFC

FORMAT{1H1,3X,3E15.8/)

IF(ALFME.GT.180.,0) ALFM=(-360.0+ALFME)}/57.3
DALF=ALFM-ALFC

DIFD=(ALFM-ALFC)*57.3

PRINT 58,DALF,DIFD
FORMAT{4XyE15.8492X4E15.8/)
SMLR=SQRT{AX*%2+AY*%2)
H{1,1)=SIN(ALFC)/SMLR
H{1,2)=-COS(ALFC) /SMLR

HT{1,1)=H(1,1)

HT{241)=H{1,2)

DO Bl I=1,2

HTRI{T,1)=HT{I,1)*%RI{1,1)
HTRTH(1,1)=HTRI{1,1)*H{(1,1)
HTRTIH(1,2)}=HTRI{1,1}*H{1,2)
HTRIH(241)=HTRI{2,1)*%H{1,1)
HTRIH{242)=HTRI{2,1) *H{1,2)

DO 82 I=1,2

DO 82 J=1,2

AM(T,0)1=PI(1,J)+HTRIH{I I}

DO 9 1=1y2

DO 9 J=1,2

AE(T,J)=AM{T,J)
D2=AF{1,1)%AE(2,2)-AE{1,2) *AE(2,1)
IF(D2.EQ.0.0) GO TO 47

AMI{1,1)=AE(2,2)/D2

AMI{(1,2)=-AE(1,2)/D2

AMI(2,1)=-AF(2,1)/D2

AMI(2,2)=AE(1,1)/D2

PRINT 64,HTRIH{(1,1)HTRIH(1,2),AMI{1,1),AMI{1,2)
FORMAT(4X,E15.8,42X4E15.842X9E15.892X4E15.8/)
PRINT 66,HTRIH{2,1),HTRIH{2,2)AMI{2,1),AMI(2,2)
FORMAT(4XyE15.842XyE15.842X+E15.842X4E15.8//)
DO 83 I=1,2

HTR(I,1)=HT(I,1)*RI(1,1)

DO 84 1=1,2
CK{T41)=AMI{I,1)*HTR(1,1)+AMI(]I,2)*HTR(2,1)
HD(1,1)=H(1,1)%DCPXY{1,1)4H(]1,2)*DCPXY{(2,1)
DLFHD({1,1)=DALF~HD{1,1)

DO 85 [=1,2

CKD{I,1)=CK{I,1)*DLFHD{1,1)

200




201

DD B I=1,2

86 NCPXY{T141)=CKD{T,1)+DCPXY(I,1)

HP {1, 1)=HI1,1)%P{1,1)+H{1,2)%P{(2,1)
HP{142)=H{1,1)%P{1,2)+H{1,2)%P(2,2)
HPHT{1,1)=HP{1,1)*HT(1,1)4HP{(1,2)%HT{(2,41)
BM{1,1)=R{1,1)+HPHT(1,1)
BMI{1,1)=1.0/BM{1,1)
PHTI1,1)=P{1,1)Y%HT{1,1)+P(1,42)%HT(2,1)
PHT{241)=P{2y1)%HT(1,1)+P{2,2)%HT(2,1)

DD 89 I=1,2 ,

89 PB{I,1)=PHT(I,1)%BMI(1,1)
PBHP({1l,1)=PB(1,1)*HP{1,1)
PBHP{1,2)=PB{1,1)%*HP{(1,2)
PBHP{2,1)=PB{2,11%HP(1,1)
PBHP{2,2)=PB{241)%HP(1,2)

DO 19 1I=1,2
DO 19 J=1,2

19 PL{I J1=P{1,J)-PBHPI(I,J)

PRINT 5,DCPXY{1,1),DCPXY{2,1)
S5 FORMAT(4X,E15.,842X,E15.8/)
PRINT 44,P{1,1),P{1,2)

A4 FORMATIAA9E17e09CA9IC L8077
PRINT 29,P{2,1),4P(2,2)

29 FORMAT(4X,E15.892X4E15.8/777)

GO TO 88

45 PRINT 39

39 FORMAT{20X,21HN=0 PI CANNOT PERFORM]
GO TO 99

47 PRINT 49

49 FORMAT{20Xy22HD=0 AMI CANNOT PERFORM)

NN NoTMMTYT 77
727 T iNarwd AR}

77 FORMAT{1H1,20HEND OF JOB THANK YOU)
CALL EXIT
END
FORM COF INPUT DATA X1,Y1,X2,Y2,ALFI ALFII
200 190 4.0 -ZOO 2607047 -26n5795
FORM OF INPUT DATA X{K)Y{K)ALFME(K) 4K
-2.0 8.0 103.8340
-5.0 -2.0 202.0022
6.0 8.0 53.1393
2.0 5.0 68,2511
0 5.0 135.,0673
»0 -6.0 -50,3190
+0 ~10.0 239,1266
0 1.0 168.,6730



INPUT DATA

LANDMARK POSITION L1

L2
L3
L4
L5
L6
L7
L8
L9
L10

XK X X X XK X X XXX

MEASURED ANGLE ALPHA 01

RESULTS

ACTUAL POSITION

02

O NIV P VN

(LI T | T O 1A T A | B | A 1

oo n

oo

NN N

¢« & ¢ » & o b » s

CO0O00OOOOO
< €€ € € << <<
| T T T 1 T | I I 1 IO

26,7047
-26.5795
103.8340
202.0022

53.1393

68.2511
135.0673

A N v AN
FAVE B SRV

239,1266
168.6730

bt et NN OO N

e De & 6 s ¢ 2 o @

OGOOOOOOOOO

{DEGREES)

(KILOMETERS)

0.0 Y =

ESTIMATED POSITION BY

1. ARITHMETIC MEAN X = 0.,00215

Y =

2. LEAST SQUARE SOLUTION REGRESSION
X = -0.,015

3. KALMAN ESTIMATION

INITIAL ESTIMATION X =

SEQUENTIAL ESTIMATION

L1
L2
L3
L&
LS
L6
L7
L8

2K XK X X DK D X

L T [ S VR VI I 1}

~0.,00447
-0.00648
-0.00582
-0.00152
0.00170
0.00687
0.00323
0.00183

€< <L <

[ | S TS O O B [ I

Y = -0,00]

0.00708 Y

-0.00638
-0.00364
-0.00354
~0.00256
-0.00119

0.00093

0.00026
-0.00061

0.00532

-0.00245
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